
Exploiting Domain-Specific Knowledge To Refine Simulation Specifications�

David Pautler
Steven Woods
Alex Quilici

Department of Electrical Engineering
University of Hawaii at Manoa

Honolulu, HI 96822

Abstract

This paper discusses our approach to the problem of
refining high-level simulation specifications. Our domain
is simulated combat training for tank platoon members.
Our input is a high-level specification for a training sce-
nario and our output is an executable specification for
the behavior of a network-based combat simulator. Our
approach combines a detailed model of the tank-training
domain with non-linear planning and constraint satisfac-
tion techniques. Our initial implementation is successful
in large part because of our use of domain-knowledge to
limit the branching factor of the planner and the constraint
satisfaction engine.

1 Introduction

There has been considerable work in turning specifica-
tions (either formal or informal) into executable programs.
Some systems use algebraic techniques and design tactics
to synthesize and refine data structures, representations,
and algorithms that provide solutions to scheduling and
optimization problems [6, 8]. Other systems use deductive
program synthesis [11] to combine components to construct
physical or numerical simulations [10, 4].

We have been working on a different but related prob-
lem. Our focus is in refining high-level specifications into
more detailed specifications. Specifically, we concentrate
on forming executable simulation scripts from high-level,
partial simulation specifications. This paper presents our
mechanism for doing so, which relies heavily on domain
modeling, non-linear planning, and constraint satisfaction
techniques.

�This project has been funded by the DARPA CAETI program, under
contract number N66001-96-C-8502.

2 The Problem

The Army currently does much of its tank training us-
ing ModSAF (Modular Semi-Automated Forces), a dis-
tributed, interactive, combat simulator [3]. In ModSAF,
different battlefield actions are programmed in as parame-
terized tasks. For example, one task might be a particular
type of helicopter attack, and its parameters include how
many helicopters are involved in the attack, their initial
location, the actual location of the attack, and so on. Mod-
SAF provides an architecture for controlling the execution
of these tasks and their interaction with human-generated
actions (such as firing a weapon within a physical tank
simulator).

To set up a particular simulation, it is necessary to spec-
ify exactly what simulated forces are present, which tasks
they should execute, when these tasks should be executed,
and so on.1 The problem is that these detailed, formal
specifications must be formed from less-detailed, relatively
informal training specifications.

Figure 1 shows a typical specification for a tank platoon
training exercise. It loosely specifies where the scenario
should take place (a general region), what formations and
battle actions are required (some actions that should def-
initely be trained for), and how long the scenario should
last (a time range). These training requirements essentially
specify a minimal set of actions to execute and a set of
constraints on those actions (such as the locations where
they occur).

The focus of our work is automatically turning these
high-level specifications into a concrete script for a training
scenario. This scenario contains detailed specifications of
the actions of the simulated forces, as well as orders to be
given to the human participants in the scenario.

Figure 2 shows an example of a refined specification (in

1Automatically generating the implementation of these tasks from
specification of behavior and doctrine is an open research question cur-
rently being addressed by others [1].



A. Use the region in map “NK” bounded by (180, 370) in the
lower left corner and (280, 500) in the upper right corner.

B. Start the WHITE platoon in the HERRINGBONE
formation with no enemy unit firing on WHITE.

C. Include at least the following movement techniques and
battle actions:

COLUMN-TRAVELING-FORMATION
CONTACT-WITH-SMALL-ARMS-FIRE
DEFEND-AGAINST-AIR-ATTACK

D. Terminate with WHITE in a COIL formation.

E. The exercise should last between 60 and 180 minutes.

Figure 1: An informal training specification.

A. Make start at (200, 380) and end at (275, 455).
Forces platoon through narrow gap, necessitating
COLUMN formation.

B. Place no enemy units near start position.
Avoids starting simulation with trainees being fired
upon

C. Order platoon to assemble in HERRINGBONE formation.

D. Place SMALL-ARMS-FIRE enemy unit at (245, 400),
aiming North.

Forces platoon to pass this enemy unit triggering
CONTACT-WITH-SMALL-ARMS-FIRE drill.

E. Place HELICOPTER enemy unit at (260, 450), aiming
SouthEast.

Forces platoon to pass this enemy unit triggering
DEFEND-AGAINST-AIR-ATTACK drill. Also puts
mountain between enemy and platoon, for enemy
helicopter cover, and a forest near by, for platoon
cover.

F. Order platoon to move out of its stopped formation when
helicopters have cleared.

G. Order platoon to move toward end position.

H. Order platoon to stop in COIL formation.

Figure 2: An overview of the resulting, refined specifica-
tions.

English, for readability). The refined specification includes
enabling assembly and movement actions, specifies the or-
der and location of actions, and places of enemy forces to
allow those actions.

While our particular problem deals with combat sim-
ulation, we are addressing the more general question of
refining specifications for systems to be constructed from
components. The refinement process determines additional
components, what their parameter values should be, and
how they should be stitched together.

�

�

�

�

�

�

Non-Linear
Planner

Specification
Exercise

High-Level

Location-Independent
Scenario

Specification

Engine
CSP

Domain Model

Operators
For

Training
Maneuvers

Terrain
Database

Final
Scenario

Specification

Figure 3: An overview of our architecture.

3 Overview Of Our Solution

We have constructed an environment that provides a
forms-based tool for specifying a high-level training ex-
ercise specification (desired actions, starting and ending
regions, and so on) and produces a detailed exercise spec-
ification meeting these requirements. If, for some reason,
the resulting specification isn’t suitable, the user can mod-
ify the original exercise specification and repeat the process
to generate a new, more appropriate, simulation specifica-
tion. For example, the initial specification may fail to ex-
clude actions that are actually undesirable for this exercise
(e.g., do not use a WEDGE-TRAVELING-FORMATION),
which may result in their being used to flesh out the origi-
nal specification. The user can then mark those actions as
undesirable and repeat the process to generate new specifi-
cations.

Figure 3 shows the architecture of our solution. We
divide the task of refining specifications into two parts:
determining which actions should take place, and then de-
termining where these actions should take place. To de-
termine which actions should take place, we use a domain
model representing actions as planning operators and apply
standard non-linear planning techniques. To specify where
these actions should take place, we use a terrain database
describing properties of different terrain locations and ap-
ply constraint-satisfaction techniques.



The motivation for this architecture is that there are two
different types of enabling conditions on actions. One type
can be fulfilled by applying other operators. An example
is the enabling condition that one must be moving before
initiating an attack. We achieve this type of enablement
by using planning to form a set of partially-ordered and
terrain-independent actions. The other type cannot be sat-
isfied by applying other operators. It is exemplified by
enabling conditions involving terrain constraints, such as
that tanks cannot travel over mountains. We ensure that
these enabling conditions are satisfied by using constraint-
satisfaction techniques to fit planned acts to scenario terrain.

4 The Domain Model

Our domain model is a collectionof operators describing
each of the actions in the tank-trainingdomain. Each action
corresponds to a currently simulated ModSAF task, and a
high-level user specification may indicate that one or more
of these tasks must be executed. Figure 4 lists these actions,
which can be loosely divided into movement techniques
(different ways of getting from one place to another) and
battle actions (different ways of engaging an enemy).

Following standard planning practice, each operator is
represented in terms of its enablements and effects [2].
Figure 5 contains an example, the operator NORMAL-
TRAVEL-METHOD (shown in English, rather than our
frame-based representational language).

The NORMAL-TRAVEL-METHOD operator illus-
trates the different enabling conditions mentioned earlier.
One of its enabling conditions is that the platoon has moved
out from its starting position, an enablement that is filled
by any Move-Out action. Another enabling condition of
this operator is that the path must be clear from start to
finish, an enablement that can be filled only by placing the
execution of the operator in a particular subset of terrain
locations. Terrain-related enabling conditions on other op-
erators specify things such as the needed width of a path,
the type of nearby terrain, whether the path is clear, whether
an enemy is visible or invisible, and so on.

5 Refining Specifications

Figure 6 sketches our algorithm for refining the initial
specifications into a simulation script. Essentially, we di-
vide the process into two tasks: determining which actions
are necessary to fulfill the original specification and an-
choring each action to particular place in the terrain.

Move-Out(platoon, stopped-pos)
Move-out-from-stationary-formation
Move-out-from-halted-traveling-formation

Air attack requires platoon to halt ASAP, usually before
it has time to form a stationary formation (stationary
formations are more secure than traveling formations)

Assume-Travel-Formation(platoon, start, end)
Travel-in-column-formation

Columns provide the least security but allow movement
through narrow passageways.

Travel-in-wedge-formation
Most secure and most favored formation.

Travel-in-staggered-column-formation
Less secure than wedge, but narrower

Travel-in-echelon-formation
Maximum security to either flank

Travel-in-vee-formation
Good security for flanks, and narrower than echelon

Travel-in-line-formation
Less secure than wedge, but preferred for assaults

Employ-Travel-Method(platoon, start, end, formation)
Normal-travel-method
Travel-with-overwatch

Slower but more secure, so used when attack expected.
Travel-with-bounding-overwatch

Even slower and even more secure.

Engage-Enemy(platoon, start, end, formation, travel-method)
Contact-with-small-arms-fire-drill

Platoon continues moving while firing on source of small
arms fire. Small arms units tend to hide in cover.

Defend-against-air-attack-drill
Platoon fires on helicopter, and then veers from path to
find cover ASAP. Helicopters fire while popping up from
behind small mountains.

Change-of-direction-drill
Change-of-direction-to-assault-enemy-drill
Change-of-direction-to-avoid-obstacle-drill
Change-of-formation-drill
React-to-indirect-fire-while-stopped-drill

When stopped platoon receives shower of fire, it either
returns fire or moves out from its position.

Complete-Movement(platoon, end, formation, method, drill)
Move-To-Leg-End-Following-Bounding-Overwatch
Move-To-Leg-End-Following-Non-Bounding-Overwatch

Terminate(platoon, end)
Stop-in-coil-formation

Most secure stopped formation, but longer to set up than
herringbone or a halting during a traveling formation.

Stop-in-herringbone-formation
Halt-in-travel-formation

Figure 4: The operators in our domain model.



Operator-Normal-Travel-Method
Arguments:

Platoon
Current-Travel-Formation
Start-Pos
End-Pos

Enablements:
1. Platoon has moved from Start-Pos.
2. Path between Start-Pos and End-Pos is clear.
3. Forward-Fire-Capability as determined by

Current-Threat-Formation is good to excellent.
Effects:

1. Move from Start-Pos to End-Pos with excellent
speed and moderate security.

2. Previous-Formation is now Traveling-Formation.
3. A Battle-Action can happen between Start-Pos and

End-Pos.

Figure 5: A detailed look at one operator in our domain
model.

Determine Actions

A. Assign the operator corresponding to each initially required
action to a leg (resulting in the partial instantiation of one or
more legs).

B. For each leg, invoke a planner to instantiate the unspecified
operators required for each leg so that the enabling condi-
tions for required actions are fulfilled.

C. Concatenate the individual legs together to form a complete
set of actions (resulting in a complete, ordered specification
of all actions to be executed).

Map Actions To Terrain

D. Form a constraint satisfaction problem by running through
each of these instantiated actions, adding unfulfilled enable-
ments as constraints, and adding unspecified parameters as
variables.

E. Solve the resulting constraint satisfaction problem (resulting
in the specification of locations for each action).

Figure 6: Our approach to refining simulationspecification.

5.1 Forming A Complete Action Specification

Our approach to refining scenario specifications starts
by forming a revised specification that apportions each re-
quired action to a leg. An instantiated leg corresponds to a
sequence of operators, where each operator plays a partic-
ular role, called a stage. Figure 7 is a detailed description
of the six stages in a leg, which we have already used
implicitly to group the operators in Figure 4 (i.e., Move-
Out, Assume-Travel-Formation, Employ-Travel-Method,
Engage-Enemy, Complete-Movement, and Terminate).
Each of the operators in our domain model is classified
as belonging to one of these stages. In an instantiated leg,

Move-Out: Do an action that involves moving from a stopped
position into a standard stationary formation, suchas a COIL
or HERRINGBONE.

Assume-Travel-Formation: Do an action that involves moving
into a particular type of traveling formation, such as a
WEDGE or COLUMN.

Employ-Travel-Method: Possibly augment the travel method
with variants of a traveling method for greater secu-
rity or speed, such as switching to an TRAVELING-
OVERWATCH.

Engage-Enemy: Participating in a standard battle action, such as
firing and looking for cover, in response to encountering
enemy units.

Complete-Movement: Move to the end point of the leg.

Terminate: Optionally, stop in a standard stationary formation,
although this may only be a temporary stop before starting
on a new leg.

Figure 7: The stages in a leg.

a stage can be filled by one and only one operator.
As an example, the three specified actions in Fig-

ure 1 (MOVE-COLUMN, SMALL-ARMS-FIRE, AIR-
ATTACK) can be apportioned to two legs (MOVE-
COLUMN as the Employ-Travel-Method and SMALL-
ARMS-FIRE as the Engage-Enemy in one leg, AIR-
ATTACK as the Engage-Enemy in another leg). We can’t
place all these actions in a single leg, as there are two
Engage-Enemy operators.2

Apportioning each required action to a leg segments
the task of determining the necessary actions into largely
independent parts that can be planned for independently,
greatly simplifying the planning problem. That is, after
placing each action in a leg, we can generate a plan by
fleshing out the remaining actions in that leg. We then
recombine the legs into a sequence of actions to determine
the complete set of actions for the users desired scenario.

5.2 Specifying Action Locations

At this stage, we have refined the initial specification to
a set of actions. To complete the process of refining the
specification, we need to anchor each action to the terrain.
We do this by treating the assignment of actions to locations
as a constraint satisfaction problem [12].

A constraint satisfaction problem (CSP) typically con-
sists of three major components: a set of variables, a finite
set of domain values for each variable, and a set of con-
straints among the variables that restrict domain value as-
signments. A solutionof a CSP is a set of domain-value-to-
variable assignments such that all inter-variable constraints

2In general, if an exercise involves two traveling formations or two bat-
tle actions, they must occur on different legs, which accurately represents
how real-world training acts occur.



are satisfied. There are a variety of well-understood meth-
ods for solving these problems [13].

The variables in our CSP represent the start and end
points of exercise legs and the positions of enemy units and
terrain features. As a result, these variables take terrain
locations as values. For example, a Defend-Against-Air-
Attack requires a location where the attack should take
place, as well as a location for where the attacking aircraft
can be based. The location constraints in our CSP corre-
spond to a subset of the enablements of the operators and
include things such as a point being a particular type of
terrain (e.g., a forest). Figure 8 lists the most important of
the currently required spatial constraints.

The CSP itself is formed by running through each plan
operator and gathering up the enabling conditions that are
relevant to spatial locations.

Once the CSP is set up and solved, all actions have been
bound to specific locations. The result is a refined specifi-
cation that adds the necessary but unmentioned actions and
that binds all actions to specific terrain locations.

5.3 The Justification For Our Approach

Any plan-based technique must face a potential combi-
natorial explosion of possible interactions between opera-
tors, effects, and enablements. Our work is making use
of two well-known techniques to control the complexity of
planning problems: hierarchical decomposition and hierar-
chical approximation [14, 9].

Hierarchical decomposition involves breaking a plan-
ning problem into actions at different levels of abstraction.
This structure allows the planner to initially form plans
using high-level operators and to then use the constraints
that arise from forming these high-level plans to more ef-
ficiently form low-level plans. We are applying this tech-
nique in our use of legs and stages. A leg is an abstract,
partially-specified, domain-specific plan, where each stage
is a set of possible operators that share similar characteris-
tics. This reduces our planner’s job to bindingeach stage to
an operator in a consistent fashion, as opposed to trying to
work from scratch to find a suitable sequence of operators.

Hierarchical approximation involves planning with sim-
plified versions of the available operators and progressively
making them more detailed. We use hierarchical approxi-
mation in terms of ordering enablements by their criticality.
The idea is first to plan for the enablements that are the most
difficult (or critical) to achieve: we focus first on satisfying
movement and action preconditions, and then we focus on
preconditions related to spatial constraints. This ordering
arises from our assumption that for our problem domain
the spatial constraints are the least critical.

Node Constraints (constraints on a single point).

Terrain(type): The location must be a particular type of terrain
(plain, forest, mountain).

Radial-Space(n): There must be radial space of size N at the
given location.

In-Region(r): The location must be located in a particular square
region.

Empty: The location must be empty.

Enemy-Unit(type): There must be an enemy-unit of the specified
type at the given location.

Arc Constraints (constraints between two points).

Leg-Clear: No obstructions between two points.

Leg-Lateral-Space(w): Path between points has a minimum
width.

Min-Separation(d), Max-Separation(d): There must be at least
(at most) a specified separation between points.

Same-Terrain: Both points share the same terrain.

Direction(d): The first point must be in the specified direction
(East, West, North, South) from the second.

Figure 8: Some of our current spatial constraints.

6 Implementation

We have completely implemented the approach dis-
cussed within this paper using by pre-existing Lisp-based
implementations of a planner [16] and a constraint satisfac-
tion engine [15] we had developed for earlier projects. The
system produces both a textual specification and a visual
depiction of the scenario, as shown in Figure 9.

We have generated a variety of detailed scenario speci-
fications using the 24 operators described here and using a
terrain database detailing the armor school training ground
at Fort Knox. The operators have between 3 and 10 en-
ablements and 4 to 7 effects each. It takes on the order of
10 seconds per leg to determine which actions should be
included in the plan corresponding to that leg, and it takes
on the order of a minute to locate these actions by solving
the resultingCSP (using a standard Forward-Checking with
Dynamic-Rearrangement CSP solver). This suggests that
our breakdown of specification refinement into two distinct
tasks has led to an efficient overall refinement process.

Forming and representing the current domain model has
taken approximately six man-months of effort. Designing
and implementing the system on top of the existing tools
has taken another six man-months of effort.

7 Applications To Software Synthesis

We have applied our approach only to the problem of
refining simulation specifications. However, it may well be



Figure 9: A visual depiction of a refined scenario specification.



applicable more generally to synthesizing applications from
software components. In particular, our “legs” correspond
to high-level, abstract scripts of how different types of
components might fit together to perform high-level tasks,
and our initial specification consists of requests to use some
particular components. Our “terrain database” corresponds
to a list of resources available to these components as they
are executing (such as machine types, network connections,
buffers, memory, and so on).

In this view, our planner is taking a set of requested
components (e.g., particular actions on a data stream) and
then determining what other components are needed, what
their parameters should be, and how they all fit together.
It does so by representing each component as an operator,
with a set of preconditions that must be established by exe-
cuting other components (e.g., the requirement that certain
attributes must have been computed) and an additional set
of conditions that must be true about the world in which the
component executes and that cannot be achieved by other
components (e.g., the requirement that certain resources,
such as a particular network topology or message passing
scheme be available). Our constraint satisfaction engine
would make sure that these components can be assigned
suitable resources.

8 Future Work

We are currently working on addressing the limitations
of our current system and on applying our approach to
additional domains.

8.1 Addressing Current Limitations

Despite our current system’s successful implementation,
it has several limitations that need to be addressed.

One minor problem is that we have not yet completely
captured the domain of tank-related combat. In particular,
there are six other battle actions that are used in current
training that we need to incorporate into the domain model.
We estimate that extending our domain model to include
operators for these actions will represent approximately
two additional man-months of effort.

Another minor problem is that we currently restrict what
is allowable in terms of the initial, high-level specification.
We are in the process of loosening these restrictions to
allow the user to provide additional ordering constraints on
actions, to request that an action be executed a particular
number of times or in a particular region, and to provide
partial parameters for selected actions.

A more major problem with our current approach is that
it assumes that any specified set of actions can be fixed
to terrain locations. While this assumption seems to hold

for the specific high-level scenario specifications we have
tried, with a more restrictive terrain database it’s possible
that our algorithm would be unable to find locations for a
planned set of actions, while another set of actions that met
the same initial specifications would have been suitable.
One approach to extending our architecture to handle this
situation is to iteratively try to generate new action speci-
fications when an attempt to fit a plan to the terrain fails.
This can be done by trying alternative ways of binding the
initially specified actions to legs, as well as trying to find
multiple solutions to the bindings with a given leg.

One final problem is that our current approach assumes
we are specifying the behavior for the training exercise for
a single platoon. A harder problem is to specify interacting
training exercises for multiple platoons on the same terrain
database. As a result, we are now looking at extending
our work to generate simulation specifications that involve
multiple interacting scenarios. Our approach to tackling
this problem is to add an intermediate “plan merging” [5,
17] step between specifying actions and fitting the actions
to the terrain.

8.2 Applying To Additional Domains

We are now working on applying our approach to two
new domains.

The first target is to perform specification refinement for
a visual data-flow programming system we had developed
previously for constructing telemetry processing systems
[7]. In this system, the user uses an annotated data-flow
graph to visually specify components that are required, their
relationships to other components, and type constraints on
the information flowing between components. The system
helps the user to refine this specification by suggesting
candidates for unspecified components that meet the user’s
original specification. Our plan is to apply our approach to
completely automate refining the specification.

The other target domain is generating detailed scene
specifications for video games. In many video games, the
user is supposed to move from one point to another within
a particular artificial world, interacting with or avoiding a
variety of different hazards. The elements of this world are
often programmed as a set of objects, and the game inter-
nally has an architecture for controlling the invocation of
operations of these objects and the interaction of these ob-
jects with human-generated actions (e.g., moving a joystick
or pushing a button). As a consequence, there are many
similarities between our simulation specifications and video
game scene specifications. Our plan is to take a high-level
specification of desired character actions and relationships
and to generate a detailed, executable specification of the
actions that should happen in the scene. The user can then



observe the scene behavior and use those observations to
determine how to change the original specifications.

9 Conclusion

This paper has discussed the architecture of a system to
refine high-level specifications for combat training simula-
tion into detailed, executable simulation scripts. The sys-
tem’s overall architecture treats refining simulation specifi-
cations as a planning problem and makes use of a detailed,
operator-based model of the tank training domain. The
model can efficiently refine high-level training specifica-
tions into detailed specifications for the scenarios currently
used in the Fort Knox armor training school.

We rely on domain-specific implementations of general
AI planning heuristics to control the large search space
typically encountered while refining specifications. In par-
ticular, we divide up enablements into those that can be
planned for directly and those that can be represented as
constraints on the world, and we use the domain-specific
abstraction of “legs” to further reduce the planning prob-
lem. This effort provides additional evidence of the utility
of applying domain-specific knowledge in moving from
simulations to executable code.

References

[1] Balzer, B. Generating Semi-Automated Synthetic
Forces. 1996 Computer Generated Forces Working
Group, Orlando, Fl, 1996.

[2] Chapman, D. Planning for Conjunctive Goals. Artifi-
cial Intelligence, 32:333-377, 1987.

[3] Ceranowicz, A., "Modular Semi-Automated Forces",
Technical Report. The Loral Advanced Distributed
Simulation Group, Cambridge, MA, 1995.

[4] Ellman, T. and Murata, T. Deductive Synthesis of Nu-
merical Simulation Programs from Networks of Al-
gebraic and Ordinary Differential Equations. In Pro-
ceedings of the Eleventh Knowledge-Based Software
Engineering Conference, Syracuse, NY, Sept. 1996.

[5] Foulser, D. and Li, M. and Yang, Q., A Quantitative
Theory of Plan Merging. In Proceedings of the 1991
AAAI Conference, Anaheim, CA, pp. 673–679, 1991.

[6] Gomes, C., Westfold, S., and Smith, D. Synthesis of
Schedulers for Planned Shutdowns of Power Plants. In
Proceedings of the Eleventh Knowledge-Based Soft-
ware Engineering Conference, Syracuse, NY, Sept.
1996.

[7] Gorlick, M. and Quilici, A. Visual Programming-in-
the-Large versus Visual Programming-in-the-Small.
In Proceedings of the 1994 Visual Languages Sympo-
sium, St. Louis, MO, October, pp. 137-144, 1994.

[8] Graham, R., and Bailor, P. Synthesis of Local Search
Algorithms by Algebraic Means. In Proceedings of
the Eleventh Knowledge-Based Software Engineering
Conference, Syracuse, NY, Sept. 1996.

[9] Knoblock, C. Search reduction in hierarchical prob-
lem solving. In Proceedings of the 1991 AAAI Con-
ference, pp. 686-691, 1991.

[10] Lowry, M., Philpot, A., Pressburger, T., Underwood,
I. A Formal Approach to Domain-Oriented Software
Design Environments. In Proceedings of the Ninth
Knowledge-Based Software Engineering Conference,
Monterey, CA, Sept 1994, pp. 48-57.

[11] Manna, Z., and Waldinger, R. Fundamentals of deduc-
tive program synthesis. IEEE Transactions on Soft-
ware Engineering, 18(8):674-705, 1992.

[12] Tsang, E. Foundations Of Constraint Satisfaction.
Academic Press Limited, 24-28 Oval Road, London
England, NW1 7DX, 1993.

[13] VanBeek P. and Kondrak, G. A theoretical evaluation
of selected backtracking algorithms. In Proceedings
of the 1995 International Joint Conference on Artifi-
cial Intelligence, pp. 541–547, 1995.

[14] Wilkins, D. Practical Planning: Extending the Clas-
sical AI Planning Paradigm Morgan Kaufman, Palo
Alto, CA, 1988.

[15] Woods, S. 1996. A method of program understand-
ing using constraint satisfaction for software reverse
engineering. Ph.D. Thesis, Department of Computer
Science, University of Waterloo, Waterloo, Canada.

[16] Woods, S. An implementation and evaluation of a hi-
erarchical non-linear planner. Master’s Thesis. Tech-
nical report CS-91-17. University of Waterloo, On-
tario, Canada, 1991.

[17] Yang, Q. Intelligent Planning - Algorithms and Anal-
yses for Plan Reasoning, Springer Verlag, New York,
New York, 1997.

[18] Yang, Q., Tennenberg, J. and Woods, S. On the imple-
mentation and evaluation of Abtweak. Computational
Intelligence, vol 12., 1996.


