
A Computational Model Of Recognizing and Revising Inappropriate Advice1

David Pautler and Alex Quilici
University of Hawaii at Manoa

Department of Electrical Engineering
2540 Dole Street, Holmes 483

Honolulu, HI 96822

Abstract

Advice-giving is improved by understanding and responding
to user feedback. Previous models of this task treat user re-
sponses as misunderstandings or misconceptions and focus on
generating alternate or corrective explanations. By and large,
however, these models do not consider the possibility that the
system’s advice is inappropriate and may need revision during
the course of an on-going dialog. This paper presents a model
of the process of revising plan-oriented advice in response to
user feedback. Our focus is on mechanisms for evaluating
planning alternatives, for determining when to revise advice,
and for dynamically generatingexplanationsof these revisions.

Introduction
Advising can be viewed as the process of providing suggested
courses of action. An advice-giving dialog is one in which the
advisor gives advice, the user provides feedback about that
advice, and the advisor addresses that feedback.

Research into constructing computational models of advis-
ing has focused on the problem of recognizing and respond-
ing to user misunderstandings or misconceptions. Addressing
misunderstandings has been modeled as a reactive planning
process, where the advisor has a set of plans for getting across
a particular piece of advice (e.g., trying an example or pro-
viding an analogy) and executes alternate plans in response
to recognized understanding failures [1, 2, 9, 10]. Addressing
misconceptions has been modelled as a process of inferring in-
correct user beliefs and planning appropriate explanations for
why these beliefs are incorrect [4, 5, 6, 8, 13]. In both cases,
however, the mistake is assumed to lie with the user, and while
the advisor’s presentation changes—either by choosing dif-
ferent presentation plans or by extending the presentation to
encompass explanations for incorrect beliefs—the advisor’s
suggested courses of action remain static.

Other earlier work [11, 12] extended these efforts to ac-
knowledge that a user rejects advice not because of a mis-
understanding or misconception but because of flaws in the
advice itself, such as failing to take into account all of the
user’s goals. However, this work focused on the problem of
inferring how a user response relates to previously stated ad-
vice (i.e., relating a stated user belief to the advisor’s specific
suggestions or explanations for those suggestions), and did
not provide a model of the process of actually revising advice
or of generating appropriate explanations for those revisions.

This paper extends earlier work to address these problems,
concentrating on plan-oriented advice. Specifically, we pro-
vide a detailed model of the process by which an advisor
can revise a plan to take into account user feedback and then
generate an explanation for any revision.

1This work was sponsoredby NSFresearch initiation award #IRI-
9309795.

The Problem
Our model of the advisor’s behavior assumes the following
scenario. The user has initially provided the advisor with
an explicit request to know the best plan for a user goal G,
and the advisor’s task is to provide that plan, along with an
explanation for why the plan is best. Furthermore, the advisor
believes that G can be achieved by any one of a set of plans,
P1 � � �Pn, and that the user possesses some additional goals
(and weightings of their relative importance) that influence
which Pi is actually the best plan for G.

Initially, the advisor’s problem is to determine which P i to
suggest to the user and to provide an explanation for why it
is the best. However, the advisor’s beliefs about which goals
the user possesses (and their relative weightings) may well be
incorrect, leading to a suggested plan that is not acceptable to
the user. As a result, the user provides feedback to the advisor,
and the advisor must re-evaluate candidate plans in light of
this newly acquired information. In particular, the user’s
feedback is a description of a user goal and/or weighting, or
alternatively, it is one or more beliefs from which a user goal
and/or weightings can be inferred [12].

Figure 1 is an example advice-giving dialog that fits this
scenario. In this dialog:
� The user asks the advisor for the best way to remove a file.
� The advisor believes that removing a file can be achieved

by any one of the plans represented by the commands “rm
file”, “rm -i file”, “mv file /tmp”, “mv file /dev/floppy”.

� The advisor believes that which removal plan is best de-
pends on possible user goals such as preventing accidental
file removal, allowing file recovery, minimizing removal
time, and avoiding questions, as well as the relative im-
portance the user gives to each (e.g., whether preventing
accidental file removal is more important than minimizing
removal time).

� The advisor believes that this particular user has the addi-
tional goal of preventing accidental file removal and allow-
ing file recovery, with preventing accidental file removal
being slightly preferred.

� The user’s responses explicitly indicate the additionalgoals
of of avoiding questions and ensuring the file no longer
exists on the machine.

To participate in this dialog, the advisor must able to deter-
mine the best plan for the user, accept user feedback (in the
form of additional goals and changed weightings), revise this
plan to take the feedback into account, and provide a suitable
explanation.

The Advisor Architecture
Our advisor model consists of a stereotypical user model,
a dialog model, a plan library, a plan evaluator, a response
generator, and a feedback processor.



User: What’s the best way to remove a file?
Advisor: Use “rm -i file”. It asks you to confirm before removing

the file.
User: I don’t want to answer questions when I remove a file.
Advisor: An alternative is to use “mv /tmp file”. That way you can

copy back any file you accidentally remove.
User: I want the file off the machine.
Advisor: “mv file /dev/floppy” will also allow you to recover your

file. It removes your file onto a floppy disk.

Figure 1: An Example Dialog

� The stereotypical user model contains a “standard” set of
UNIX user beliefs [3]. This includes a standard set of goals
and their relative importance to the user. For example,
with file removal, the standard user goals are to prevent
accidental file removal and to allow for file recovery, with
the former preferred slightly over the latter. These goals
are used in determining the advisor’s initial suggestion of
a plan.

� The dialog model contains the set of stated user and advi-
sor beliefs (including user goals), along with their inferred
connections to the dialog [12]. For example, one inferred
connection is that a user not wanting to answer questions
is addressing an unstated effect of the advisor’s suggested
plan of using “rm -i”. These beliefs are used in evaluating
plans (overriding the advisor’s defaults in the stereotypi-
cal user model) and in generating appropriate explanations
(allowing the advisor to generate explanations that are cus-
tomized to what’s been previously discussed in the dialog).

� The plan library contains descriptions of available plans,
along with a list of each plan’s enablements (conditions
that must be true before the plan can be executed), effects
(conditions that are true after the plan is executed), and ex-
ecution properties (conditions that are true about the plan’s
execution). For example, the plan of “mv file /tmp” has
the effect that the file no longer exists in the original direc-
tory and that the file exists in “/tmp”, it has an enablement
that “/tmp” is writeable, and it has a property that it takes
a time on the order of seconds to execute the command.
The effects can be both direct and indirect, with the indi-
rect effects linked to direct effects through causal chains
(e.g., “rm -i” has the direct effect of asking a question,
which leads to the user answering a question, which can
prevent accidental file removal). This information is used
both in evaluating plans (supporting plan comparisons) and
in generating appropriate explanations (supporting causal
rationales for plan choices)

� The plan evaluator determines the best plan for the user, tak-
ing into account the set of possible plans that achieve the
user’s stated goal, the user beliefs in the dialog model, and
the information about these plans found in the plan library.
This determination is done by a weighted, numeric compu-
tation, rather than symbolically, and results in a ranking of
plans by scores and an enumeration of the relative influence
of the various factors that determined this ranking.

� The response generator forms a symbolic, causal explana-
tion for why a given plan is most appropriate. This ex-
planation takes advantage of the prior dialog context (from
the dialog model), the advisor’s causal knowledge of the
relevant plan alternatives (from the plan library), and the
relative influence of the different factors that determined
the final plan ranking.

� The feedback recognizer determines the connection be-
tween a stated user goal and previously-givenadvice, infers

the other causally-related user beliefs and goals, and deter-
mines which factors in the advisor’s earlier computation of
the best plan need to be revised. This component has been
described in detail elsewhere [12].

The focus of this paper is on plan evaluation and explanation
generation.

Plan Evaluation
Our model evaluates a plan in the context of a set of effect
goals and a set of property goals. An effect goal is a desired
condition of the world after executing a plan. One example
is the goal of allowing file recovery, a condition users want to
hold true after executing a file removal command. A property
goal is a desired condition while executing a plan. One ex-
ample is the goal of fast execution of the remove command,
as it is a constraint on the execution of the plan.

Our model assumes the user has a single explicitlyprovided
user effect goal, G (e.g., remove a file), and a set of unstated
effect and property goals. Given G, the advisor locates an
initial set of plans, P1 through Pn, by finding all planning
operators that have the user’s stated effect goal as one of their
effects, and eliminates any from the set of possible alternatives
that have currently unachievable enablements.

The process of determining the best Pi then involves ana-
lyzing each Pi against user goals, either stated or inferred, in
terms of three factors:

1. The relative desirability of Pi’s side effects. All else being
equal, a plan that not only achieves the user’s main goal
but also an additional user goal, is preferred to a plan that
only achieves the user’s main goal.

2. The relative undesirability of Pi failing to have all desired
user properties. All else being equal, a plan whose ex-
ecution properties are similar to what the user desires is
preferred to one whose properties are far from what the
user desires.

3. The relative undesirability of having to achieve P i’s un-
achieved enablements. All else being equal, a plan whose
enablements are all satisfied is better than a plan with an
unsatisfied enablement.

The key problem is: How do we create a computational
model of plan evaluation that encompasses these factors? Our
model is that the process requires computing a desirability (or
undesirability) measure for each of these factors and then
combining them.

Computing Effect Desirability
Effect desirability captures the relationship between the plan
and the user’s effect goals (other than the main effect goal,
which triggered this particular set of plans). It is defined as
(EGD�EA), whereEGD represents effect goal desirability,
EA represents goal achievement.
EGD is a vector that captures the relative desirabilities

(weightings) of the possible user effect goals. This vector
contains one entry per possible user goal, which represents
the goal’s strength. The entry corresponds to an integer be-
tween 10 and �10, where 10 represents the strongest goal,
0 represents apathy, and �10 represents the opposite being a
goal. These weightings are initially formed from the stereo-
typical user model and augmented, as the dialog progresses,
by stated and inferred user goals.
EA is a matrix that captures the relationship of each candi-

date plan to the set of possible user effect goals, where there
is one column per plan, one row per goal, and the entries are
values that capture the relationship between the plan and the



goal. These values also correspond to an integer between 10
and�10, where 10 represents achieving the goal, 0 represents
not being relevant to the goal, �10 represents thwarting the
goal, A value between 0 and 10 means the plan only partially
or sometimes achieves the goal (e.g., “rm -i” only prevents
accidental file removal if the user answers “n” for files that
actually shouldn’t be removed). This matrix captures only
the final relationship between plans and goals, not the causal
relationship of how these plans achieve or thwart the goals.

The result of multiplying EGD � EA is a vector that
captures the relative ability of these plans to satisfy the user’s
effect-related goals. The higher the score for an individual
plan, the closer it comes to satisfying the users goals.

As an example, the stereotypical starting values of EGD
for our example dialog is [10� 8� 0� 0], with the entries repre-
senting the desirability of preventing accidental file removal,
allowing file recovery, avoiding questions, and ensuring the
file is actually removed from the host. That is, users have pre-
venting accidental removal as a strong goal, with allowing file
recovery a close second, and users are apathetic about avoid-
ing questions or ensuring the file is really removed). EA’s
initialvalues are determined based on causal relationships and
are fixed across all users, as shown below:

use use use mv use mv
rm rm -i /tmp floppy

prevent accidental �10 9 0 0
file removal
allow recovery of �10 �1 9 10
an accidentally
removed file
avoid questions 10 �10 10 10
after command
ensure file not on 10 10 �10 10
host after command

The result, for our example file removal plans, is
[�180� 82� 72� 80] (“rm -i” is ranked the highest, “mv floppy”
is ranked a close second, “mv /tmp” is ranked third, and “rm”
is ranked a distant fourth). This low ranking for “rm” is a
direct result of its thwarting both goals the user is assumed to
have.

This computation of effect desirability ranks plans in terms
of effect goals, without considering property goals or enable-
ments. An advisor using only this information to evaluate
plans could not address user responses dealing with proper-
ties or enablements, such as “But I want a faster file-removal
command” or “But I don’t want to have to find a floppy disk”.

Computing Property Undesirability
Property desirability captures how close the properties of each
plan’s execution come to meeting the user’s desired con-
straints on that execution. It is computed and defined in a
way that’s similar to effect desirability. In particular, it is de-
fined as PGD � PD, where PGD represents property goal
desirability and PD represents property distance.
PGD is a vector that captures the relative desirabilities

(weightings) of the possible user property goals. Like EGD,
it contains one entry per possible user goal that represents the
strength of the goal, with a value between 10 and �10, and
these weights are initially formed from the stereotypical user
model.
PD is a matrix that captures the relationship of each candi-

date plan to the set of possible property goals, where there is
one column per plan and one row per property. With proper-
ties, however, we are concerned with measuring distance, so
the entries in the matrix represent how close the plan’s exe-
cution comes to having the desired property. That is, because

there is no notion of thwarting a property goal, the values in
this matrix are non-positive, between 0 and �10, with 0 rep-
resenting a plan that exactly has the particular property and
the negative numbers representing how far the plan is from
having that property.

As an example, for file-removal there are two common
user-desired properties: fast execution and command sim-
plicity. Our stereotypical starting values of EPD for these
goals is [4� 6] (command simplicity is slightly preferred to
fast execution). PA’s initial values are determined based on
causal relationships and are fixed across all users, as shown
below:

use use use mv use mv
rm rm -i /tmp floppy

executes 0 -4 -4 -8
quickly
command 0 -2 -4 -6
simplicity

That is, “rm” has both of these properties, but the others tend
to execute more slowly and are not as simple (since they all
require command-line arguments).

The overall result for property desirability for our exam-
ple (computingEPD� PD) is [0��28��40��68] (“rm” is
ranked the highest, “rm -i” is ranked a distant second, “mv
/tmp” is ranked third, and “mv file /dev/floppy” is ranked the
lowest). Here, “rm” has a high ranking is a direct result of its
having exactly the properties the user desires in a removal-
command.

Computing Enablement Undesirability
Enablement undesirability captures the negative conse-
quences to the user of having to achieve enabling conditions.
Our model computes enablement undesirabilityasEU�RE,
where EU is a enablement undesirability vector. and RE is
a required enablements matrix.
EU is a vector that captures the relative undesirability of

each of the known enablements for the set of plans under con-
sideration. It is intended to model the user’s perceived attitude
toward having to achieve the enablement. Since any enable-
ment is somewhat undesirable, the values range between�10
and 0, with a�10 indicating a highly undesirable enablement
condition and a 0 indicating apathy toward the enablement.
RE captures which plans are associated with which en-

ablements. Its values range from 0 to 10, with a 10 indicating
an unsatisfied enablement, a 0 indicating that it’s not an en-
ablement or that it’s a currently satisfied enablement, and
an in-between value indicating a partially unsatisfied enable-
ment. The idea is that even if a plan has an enablement that’s
a lot of work to achieve, that work is irrelevant if it’s already
achieved.

As an example, for the file-removal commands, the possible
plan-specific enablements are space in “/tmp” and locating
a floppy disk (directory write permission is an enablement
of any plan for removing a file, so it can be ignored). A
stereotypicalEU is [�3��6], which indicates the user minds
trying to clean up “/tmp”, but minds much more having to
locate a floppy.

use use use mv use mv
rm rm -i /tmp floppy

space in /tmp 0 0 10 0
available floppy 0 0 0 10

By multiplying EU and RE, we come up with an undesir-
ability cost vector for these plans of [0� 0��30��60].



Computing An Overall Ranking
Essentially, effect desirability captures the progress the user
can make toward achieving various user goals, while property
undesirabilityand enablement undesirabilitycapture the price
the user has to pay—just how far the plan is from ideal. Our
model combines these measurements to achieve an overall
desirability for the plan by normalizing each of these mea-
surements and then computing a weighted sum,

scorei = w1 � ned +w2 � npu +w3 � neu

where scorei is Pi’s score, wi represents a weight, ned is
the normalized effect desirability, npu is the normalized plan
undesirability, and neu is the normalized enablement undesir-
ability.

We normalize effect desirability and property undesirability
by dividing the respective scores by the number of effect and
property goals, respectively. For effect goals, this results in
a score between �100 and 100 (where 100 is a plan that
achieves all the goals; a score of 0 is a plan that is essentially
side-effect neutral, and �100 is a plan that thwarts all the
goals). For property goals, we do the same, but this results
in a score between �100 and 0, where 0 is a plan that is
ideal in terms of its properties, and �100 is a plan that’s as
far as possible from ideal. We normalize enabling conditions
by dividing by the number of enablement conditions, which
leads to a score between�100 and 0, where 0 is a plan with no
negative attitude toward achieving its enablements and �100
is a plan with maximal negative attitude.

The weights, wi, represent the user’s overall weightings
of each of these types of factors. If each wi is 1, the user
weights each factor evenly (which, in turn, implies that the
same desirability scale has been used for effect goals, property
goals, and attitude toward enablements). By providing these
weightings, the model allows each of these factors to be placed
on their own relative, rather than absolute, scale. In addition,
the weightings can be used to capture general attitudes of the
user, such as a user for whom it is much more important to
achieve as many effect goals as possible than to have a plan
that’s a lot of work to execute.

We have used stereotypical starting weightings of 1, �5,
and �5 for our plan evaluations, giving even weight to effect
desirability on one hand and the combined undesirability of
plan properties and plan enablements on the other hand. The
result for our example is approximately [�45� 14� 3��11],
which suggests for the standard user “rm -i” is the best, “mv
/tmp” is a distant second, and both “rm” and “mv floppy”
leave the user worse off when their side effects are considered.
However, exactly what the various stereotypical weightings
should be is an open question that needs to be experimentally
addressed.

Revising Goal Weightings
Our model of plan evaluation is heavily dependent on the
relative desirabilities of effect goals, property goals, and plan
enablements. A key question is how to the advisor can modify
these weightings during the course of an on-going dialog.

Our model currently revises weights differently depend-
ing on several different classes of goal-based user responses:
those that provide unqualified goals (e.g., “I want X” or “I
do not want X”), those that provide qualified goals (e.g., “I
really want X” or “I very much do not want X”), and those
that provide goal preferences (e.g., “I prefer X to Y”). The
assumption is that the user’s underlying purpose in making
these statements is to inform the advisor that the current plan
is insufficient because it doesn’t appropriately take the newly
stated goal into account.

For unqualified goals, the advisor simply changes the goal
weighting to the maximum value (�10 or 10, depending on
whether it’s a positive or negative goal), rather than trying to
infer an appropriate value. This “maximal change” approach
is attractive because in re-evaluating a plan, there are only two
outcomes: the plan either remains the best plan or another
plan becomes the best. If maximally revising the weighting
does not result in a new “best” alternative, it suggests that
the current alternative cannot be improved on in terms of this
goal. On the other hand, if it does result in a new alternative,
that alternative is provided as the best plan, and the user is
given the opportunity to reduce this weighting in subsequent
responses (through qualified goals or goal preferences).

In our example, when the user specifies that he doesn’t want
to answer questions, the goal of avoiding questions is auto-
matically given a 10. This results in an effect goal desirability
vector of [10� 8� 10� 0], resulting in a new ranking for file re-
moval plans in terms of goal effects, [�80��12� 172� 180].
Having this new information makes “rm” a better alternative
than before, and it makes “mv /dev/floppy” the best plan when
considered solely in terms of goal effects. However, when the
advisor considers property undesirability and enablement un-
desirability, “mv /tmp” becomes the best plan.

For qualified goals, the advisor changes the goal weighting
by a either a fixed amount or a “delta”, depending on the
linguistic term used as a qualifier (e.g., “really” causes the
goal weighting to be set to a high value, “prefer not” causes
the goal weighting to be a medium value, and so on). The
assumption here is that the user is aware the advisor considered
the goal, but believes the advisor put an incorrect weighting
on it.

Finally, for goal preferences, the advisor changes the goal
weightings to reflect the stated preference. In a user statement
such as “I prefer X to Y” causes X’s weighting to be increased
to a delta over Y (with the precise delta depending on any
qualifiers).

As with our initial weightings and our relative weightings of
effect goals, property goals, and enablements, exactly what the
deltas should be for various linguistic terms and preferences
is an open question.

Providing An Explanation
Our model assumes that the advisor will respond to the user
by either providing a new alternative (and an appropriate ex-
planation), explaining that the previous alternative is the best
(even taking into account the user’s latest feedback), or pro-
vidingan explanation that corrects a mistaken user belief [12].
Due to space considerations, we tackle only the first: explain-
ing why a new alternative is the best.

Our model for providing an explanation relies on four
advice-giving principles, derived from Grice’s conversational
maxims [7]. These are:

1. Don’t waste the user’s time by stating anything the user
already knows.

2. Don’t confuse the user by changing the dialog focus once
it’s on the new alternative.

3. Don’t confuse the user by providing information that forms
a case against this alternative.

4. Don’t waste the user’s time by telling the user something
that can be inferred by an assumption of advisor coopera-
tiveness.

We illustrate these principles by showing how the model
applies them to determine the content for the response ex-
plaining why “mv /tmp” is now the best plan for the goal.



Goal Effects:
1a) rm -i does involve answering questions
1b) mv /tmp does not involve answering questions
2a) rm -i does prevent accidental file removal
2b) mv /tmp does not prevent accidental file removal
3a) rm -i does not allow recovery
3b) mv /tmp allows recovery

Enablement costs:
4a) rm -i does not require space in /tmp
4b) mv /tmp requires space in /tmp

Property Effects:
5) rm -i executes faster than mv /tmp
6) rm -i is a simpler than mv /tmp

Figure 2: The factors where “mv tmp” and “rm -i” differ.

From examining dialogs, it appears that advisors consis-
tently use comparative explanations to explain why a new
plan is a better choice than an existing alternative. Thus, the
advisor’s first task is to determine to which alternative the new
plan should be compared. One approach is to compare the
recommended plan to each of its alternatives; however, this
can lead to a complex and lengthy response even in our simple
example. Another approach is to compare the plan to the next
best alternative. However, if the next best alternative has not
yet been mentioned in the dialog, this suddenly changes the
focus of the dialog, and has the potential to confuse the user.
As a result, our model applies the principle of maintaining
focus, and the advisor compares the new alternative with the
most recently suggested alternative. For our example, this
means comparing “mv /tmp” to “rm -i”, the plan currently
under discussion.

The advisor’s next task is generate an explanation for why
“mv /tmp” is better than “rm -i”. This explanation involves
a comparison of costs and benefits between the two plans,
which have been computed as part of the advisor’s calcula-
tion of the plan’s desirability, For our example, Figure 2 lists
the various costs and benefits in general order of most influen-
tial difference to least (items with the same number reflect the
same underlying goal, such as answering questions). Because
of the large number of influences, it is cumbersome to discuss
all of these influences in a single response. As a result, the ad-
visor must determine an appropriate subset of these influences
in a given response.

One approach to determining which costs and benefits to
discuss is to mention only the most salient differences be-
tween the plans, with salience defined in terms of the largest
influence on the plan’s overall score. However, this heuristic
often fails, as many different factors may contribute relatively
equally, or the most salient difference may be one the user is
already aware of. As a result, our approach is to apply the
advice-giving principles above to reduce the set of candidate
costs and benefits.

In particular, the advisor first avoids confusing the user by
eliminating from consideration any factor that argues against
the advisor’s new recommendation. For our example, the
advisor ignores any factor that negatively influences whether
“mv /tmp” is the best plan. This eliminates (2a) and (2b),
which indicate a failure of “mv /tmp” to achieve a goal, (4a)
and (4b), which indicate that it requires an additional enable-
ment, and (5) and (6), which indicate that “rm -i” has some
additional, desirable properties.

Next, the advisor avoids telling the user what the user al-
ready knows by eliminating any belief found in the dialog
model. This eliminates (1a), which the user’s previous re-

sponse explicitly addressed. At this point, the remaining
choices are (1b), which points out that mv “/tmp” does not
involvinganswering questions, and (3a) and (3b), which point
out that mv “/tmp” allows recovery and “rm -i” does not.

After narrowing down the set of factors to those that will
not confuse the user and that the user doesn’t already know,
the advisor has an acceptable response.
Advisor: Use mv “/tmp”. It does not require that you answer

questions. It allows you to recover your file and “rm -i”
does not.
However, the advisor then tries to make the response as

brief as possible by repeatedly applying the cooperativeness
principle, while ensuring that the focus principle is not vi-
olated. In particular, the advisor assumes that if the user
mentions a plan flaw, F , the user expects that any new sug-
gested plan will not have this F (or that if it does, the advisor
will mention it). It can therefore eliminate from consideration
any response that suggests the new plan will not have a previ-
ously mentioned flaw. In this case, this eliminates (1b), since
if the advisor simply states “use mv /tmp” in response to the
user’s desire not to answer questions, the user will infer that
this plan does not involve answering questions—so there’s no
need for the advisor to explicitly mention it.

After this first application of the cooperativeness principle,
the advisor is left with (3a) and (3b), which leads to a briefer
response.
Advisor: Use mv “/tmp”. It allows you to recover your file

and “rm -i” does not.
However, by again applying the cooperativeness assumption,
the advisor can narrow this response down to simply (3b). In
particular, the advisor assumes that if it mentions that a new
plan has an effect E, the user will infer that the old plan does
not result in effectE. As a result, stating (3b) alone will imply
(3a). While the advisor can also use the converse of this rule
to reduce the response to (3a), which implies (3b), doing so
violates the focus principle. That is, mentioning that “rm -i”
doesn’t support file recovery allows the user to infer that “mv
/tmp” does support recovery; however, it shifts the focus from
the new alternative to an old one.

Future Work
There are several key areas of future work: verifying the be-
havioral predictions made by the model, experimenting with
alternate weightings, extending and revising the model, and
integrating the model with existing work in dialog response
planning.

Verifying The Model’s Predictions
Our model makes several predictions about advisory dialogs
that need to be verified experimentally. One prediction is that
advisor explanations for why one plan is better than another
will not necessarily involve the factor that is “largest” differ-
ence between the two candidate plans. A related prediction is
that explanations that follow our model’s advice-giving prin-
ciples will be rated to be more cooperative than explanations
based on the heuristic of choosing the “largest” difference
between plan candidates. While our model is based on anal-
ysis of a variety of UNIX-related advice-giving dialogs, and
it appears to model the behaviors in many of these dialogs,
these experiments are necessary to evaluate the model’s over-
all quality.

Experimenting With Alternate Weightings
One drawback to our current approach lies in how we have
formed our stereotypical weightings. For the UNIX domain,



the stereotypical values for users have been assigned by ap-
plying general principles to specific UNIX commands. We
have treated file removal, for example, as an instance of the
general notion of destroying something, and we applied the
principle that users want to ensure they don’t destroy anything
accidentally, and if they do, they want a way to get it back—
but preferring not to destroy something in the first place. We
have then tried to approximate this notion with our weight
values. For a full-blown UNIX advisory system, however, it
is necessary to have a more accurate model of user goals. One
way to address this problem is by providing different UNIX
users with questionnaires that have them rank various goals
in different situations. This empirical approach can also be
applied to determining the weightings of property goals and
of enablement undesirability.

A feature of our current approach is that we can readily
experiment with different weightings and study the resulting
advisor behavior. In particular, it appears that we can use
our model to begin to explore the effects of user personality
on advice-giving. For example, it may well be possible to
represent laziness by giving a high undesirability to enabling
conditions (i.e., that the best solution is the one requiring the
least effort, regardless of whether it achieves other goals) and
to explore how the dialogs generated by our system com-
pare to real-world advisory dialogs involving “lazy” users.
While others have represented personality traits as weighted
combinations of goals [14], there has been little work on
studying how personality affects user-advisor interaction in
advice-giving dialogs.

Extending And Revising The Model

Our model currently uses a straightforward algorithm for re-
vising its weightings: it simply substitutes a maximal positive
or negative weighting. There are a variety of alternative, more
subtle approaches that may lead to a more accurate model of
the advice-giving process. One is to use a “delta” in response
to user goals, rather than a fixed target. That is, the model can
slightly increment or decrement its weighting each time the
user mentions a goal. A more subtle version of this approach
is to have the amount of change dependent on the value of
the weighting: the less initial information about a goal, the
more it changes (e.g., an initial weighting of 0, indicating an
apathetic user, would result a large change; a weighting of�7
indicating a strongly negative goal would change little in re-
sponse to a user statement). It’s clearly necessary to compare
the behavior of these approaches with our own.

Integrating With Dialog Planning

Our plan evaluator and response generator together determine
the high-level content of an explanatory justification for why
a given plan is the best alternative. This content, however,
may not be suitable as the entire response. Our model, for
example, generates an explanation that “mv /tmp” allows the
user to recover a file, but our illustrative dialog shows that the
advisor has embellished that explanation with an additional
causal justification of exactly how the file can be recovered:
namely, that the file exists in “/tmp” and can be recovered
by copying it back. While we can get reasonable advisor
behavior by tweaking our model to automatically provide
a causal explanation for any goal, a better approach is to
think of our response generator as generating a goal for a
dialog planning process (e.g., inform the user that “mv /tmp”
allows the user to recover a file), where the dialog planner
is responsible for determining whether it it is necessary to
provide the causal justification.

Conclusions
This paper has presented a model of the process by which an
advisor can revise plan-oriented advice in response to user
feedback. In particular, the model provides a general mech-
anism for evaluating candidate plans in response to different
stated user goals, and it demonstrates how applying a small
set of advice-giving principles can determine the content of
an appropriate explanation for any newly recommended plan.

These advice-giving dialogs can be viewed as a collabo-
rative planning process [4, 5, 6, 15], where the advisor and
user cooperate to locate the best plan for the user’s goals. Our
work is complimentary to earlier efforts in this area. It differs
in that it provides a formalization of the process of evaluating
a plan that takes into account all factors (effects, properties,
and enablements), as opposed to only a subset of them. It
also provides a mechanism based on general conversational
principles for determining the factors to discuss in a response,
as opposed to the heuristic of simply discussing the “most
important” factor.

References
[1] Cawsey, A. Explanation and Interaction: The Computer Gen-

eration of Explanatory Dialogs, MIT Press, Cambridge, MA.,
1993.

[2] Cawsey, A. Planning Interactive Explanations. International
Journal of Man-Machine Studies, 38, 169–199, 1993.

[3] Chin, D. Acquiring User Models, Artificial Intelligence Re-
view, 7(3-4), 1994.

[4] Chu- Carroll, J. and S. Carberry. Response Generation in
Collaborative Negotiation. In Proceedings of the 33rd An-
nual Meeting of the Association for Computational Linguistics,
pp. 136-143, 1995.

[5] Chu-Carroll, J. and Carberry, S. Generating Information-
Sharing Subdialogues in Expert-User Consultation. In Pro-
ceedings of the 14th International Joint Conference on Artifi-
cial Intelligence, Montreal, CA, pp. 1243-1250, 1995.

[6] Chu-Carroll, J. and Carberry, S. A Plan-Based Model for Re-
sponse Generation in Collaborative Task-Oriented Dialogues.
In Proceedingsof the Twelfth National ConferenceonArtificial
Intelligence, pp. 799-805, 1994.

[7] Grice, H. Logic and Conversation. In Syntax and Semantics 3:
Speech Acts,Cole and Morgan, eds., New York, NY: Academic
Press, 1975.

[8] McCoy. K.F. Generating Context-Sensitive Responses to
Object-Related Misconceptions, Artificial Intelligence, 41(2),
1989.

[9] Moore, J. D. Participating in explanatory dialogues: Inter-
preting and responding to questions in context. Cambridge,
MA: MIT Press, 1994.

[10] Moore, J. D. and Paris, C. L. Exploiting user feedback to
compensate for the unreliability of user models. User Modeling
and User-Adapted Interaction, 2(4), 287-330, 1992.

[11] Quilici, A. Using Justification Patterns To Advise Novice
UNIX Users . Artificial Intelligence Review, 1998 (to appear).

[12] Quilici, A. Forming User Models by UnderstandingUser Feed-
back. User Modeling and User Adapted Interaction, 3(4):321-
358, 1994.

[13] Quilici, A., M. Dyer, and M. Flowers. Recognizing and Re-
sponding to Plan-Oriented Misconceptions, Computational
Linguistics, 14(3):38–51, 1988.

[14] Reilly, W. and J. Bates. Building Emotional Agents, Technical
Report 143, Computer Science Department, Carnegie Mellon
University, Pittsburg, PA, 1992.

[15] Sidner, C. An Artificial Discourse Language for Collaborative
Negotiation. In Proceedings of the 12th AAAI, pp. 814–819,
1994.


