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Abstract 

People spontaneously ascribe intentions on 
the basis of observed behavior, and research 
shows that they do this even with simple 
geometric figures moving in a plane. This 
latter fact suggests that 2D animations isolate 
critical information—object movement—that 
people use to infer possible intentions (if any) 
underlying observed behavior. This paper 
describes an approach to using motion 
information to model the ascription of 
intentions to simple figures. Incremental 
chart parsing is a technique developed in 
natural language processing that builds up an 
understanding as text comes in one word at a 
time. We modified this technique to develop 
a system that uses spatiotemporal constraints 
about simple figures and their observed 
movements to propose candidate intentions 
or non-agentive causes. Candidates are 
identified via partial parses using a library of 
rules, and confidence scores are assigned so 
that candidates can be ranked. As 
observations come in, the system revises its 
candidates and updates the confidence scores. 
We describe a pilot study demonstrating that 
people generally perceive a simple animation 
in a manner consistent with the model.1
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Introduction 
For social robots and intelligent systems to 
interact with humans in a believable and 
humanlike manner, they will have to be able 
to ascribe mental states (e.g., intentions, 
beliefs, and desires) to the people with whom 
they interact. Humans routinely ascribe 
mental states, even in infancy. For example, 
three-month olds attribute agency to self-
propelled boxes (Luo 2010) and six-month 
old infants can distinguish helpful versus 
hindering agents (Hamlin, Wynn, & Bloom, 
2007). As adults, we ascribe mental states 
automatically, even in response to simple 
geometric objects moving in a 2D plane 
(Scholl & Tremoulet, 2000). In a classic 
study (Heider & Simmel, 1944) people who 
observed two triangles and a circle moving 
against a white background (see Figure 1) 
reported perceiving actions (e.g., chasing and 
hiding), intentions (e.g., to catch and to harm) 
and emotions (e.g., jealousy), and even 

 

Figure 1. A frame from the Heider and Simmel animation. 

http://anthropomorphism.org/img/Heider_Flash.swf 



sophisticated relationships (e.g., a love 
triangle). How do natural cognitive systems 
infer higher-order mental states from sparse, 
yet dynamic, spatially-displayed information 
that is no more than moving objects in a 2D 
plane? Can artificial systems be designed to 
make similar inferences? 

Animated 2D Objects: A Good Place to 
Start 
Given the complexity of the human social 
world, it might seem overly simplistic to 
draw inferences about intentions using only 
information from the movement of 2D 
objects. Indeed, natural human social 
perception is based on information from a 
variety of sources: verbal and non-verbal 
behavior (McNeill 1992), background 
knowledge (Andersen & Klatzky 1987), and 
biases internal to the observer (Maner et al. 
2005; Waytz, Cacioppo & Epley 2010). Prior 
computational research has successfully 
categorized observed human actions by 
intention, but it has been somewhat restricted 
with respect to domain. For example, the 
robot, Nico, is capable of observing a group 
of people playing tag and identifying the 
chaser with near-human accuracy (Crick, 
Doniec, & Scasselleti, 2007). But social 
inference goes well beyond identifying who 
is chasing whom, and the power of 2D 
animations to evoke rich attributions, while 
also being perceptually simpler than other 
kinds of social information, makes 2D 
animations well suited as a source of 
inspiration for a perceptually-driven 
cognitive model of intention ascription. By 
constraining the input, 2D animations 
simplify what is already a challenging 
computational task. Furthermore, the ease 
with which modern software can produce 
animations facilitates the generation of 
stimuli for use in experimental evaluation of 
models by comparing their inferences with 
those of human participants. 

Research Objectives 
Overall, our goal is to develop a computer 
system that could ascribe similar 
explanations as those provided by humans 
when they observe simple animations of 
moving shapes. We also want the system to 
be able to scale, beginning with a few types 
of explanations based on intentions and 
simple physical causes, and then expanding 
in terms of more intentions, other 
psychological states and traits, and, 
potentially, even other influences on 
observers such as pre-information. This 
section describes our six key objectives that 
distinguish our approach in terms of 
increased cognitive plausibility and 
scalability. 

The first objective is that the space of 
possible explanations should include not just 
instrumental goals/intentions but also more 
social intentions like those found by Heider 
and Simmel where one agent tries to 
influence the thinking of another (see also 
Abell, Happé, & Frith, 2000), as well as 
explanations based on purely physical causes 
(e.g., a preceding collision). Prior 
computational approaches to generating 
explanations using observed movements have 
focused on ascribing physical causes only 
(Forbus et al., 2008; Siskind, 2003) or have 
ascribed intentions such as “chasing” or 
“playing tag” that involve more than one 
agent (and thus are social). These intentions 
typically do not suggest the more socially 
sophisticated ability in which one agent 
factors the thoughts of another into its plans 
(Blythe et al., 1999; Barrett et al, 2005; 
Young, Igarashi & Sharlin, 2008; Crick & 
Scasselatti, 2008; Kerr & Cohen, 2010). 

Second, just as people find some 
animations can be explained in multiple ways 
unless and until decisive evidence emerges 
for or against candidate alternatives, a 
computer system should be able to generate 
and evaluate multiple candidates all through 
the action, not only at the end (because 



everyday experience rarely provides such 
convenient ending points). For example, one 
agent might flee from another only to turn 
and fight if cornered. The fleeing and 
fighting intentions are different yet related. 
The prior computational approaches to 
ascribing intention mentioned above typically 
have used animations or movies suggestive 
of single intentions only, in which 
explanations are generated only after the 
animation ends. Our goal of being able to 
generate explanations at any time as events 
unfold during an animation is inspired by the 
psychological research of Newtson (1973) 
and Zacks and colleagues on event 
segmentation (i.e., how humans parse 
continuous activity into discrete events). 
Reynolds, Zacks, and Braver (2007) created a 
neural net that monitors movement properties 
(using hand-encodings of movies such as The 
Red Balloon) and detects event boundaries, 
points when one action ends and another 
begins. Although their approach is relevant to 
our objective of generating explanations as 
events unfold, it does not address our focal 
goal of generating explanations. 

Third, folk causal theories rather than 
scientific theories should be used to model 
the knowledge drawn upon to generate 
explanations, because that is what we can 
only assume people use naively. Previous 
physical cause-ascribing research tends to use 
Newtonian laws to represent the explanations 
generated by everyday people rather than 
folk concepts such as impetus (Kozhevnikov 
& Hegarty, 2001; McCloskey, 1983). 
Similarly, folk psychology should be used 
when possible instead of scientific 
psychological constructs for explanations of 
the behavior of agents. 

Fourth, animations should have rich 
environments similar to Heider and Simmel’s 
(e.g., obstacles should be present) to allow 
for richer, more social interpretations. 
Previous intention-ascribing research tends to 
use simple or empty environments (e.g., no 

obstacles, Blythe et al., 1999). Such research 
may over-fit movement statistics on 
animations without obstacles, potentially 
resulting in miscategorization of intentions 
for animations with obstacles. 

Fifth, initial versions of animations 
should be designed to tap just one or very 
few cues (we focus initially on movement-
related cues) with the expectation that other 
kinds of cues (e.g., resemblance to real-world 
objects or creatures) can be added later. 
Ideally, adding cue-based confidence 
functions or new types of intention should not 
require altering the representations of cues 
and categories already demonstrated to 
work. Some previous strategies rely on 
optimized search procedures tailored to a set 
of intention categories (e.g., the relative 
speed of two agents as a cue for a chasing 
intention, Blythe et al., 1999). 
Methodologically, this approach presents a 
problem whenever adding an intention 
category, because the set of criteria used to 
distinguish among the previous set of 
intentions may no longer be optimal for the 
new larger set. Potentially, a new set of 
criteria would need to be collected for both 
new and old categories. That is, researchers 
risk having to re-collect data whenever 
adding new categories. 

Finally, the method of constructing and 
rating candidates should reflect known 
psychological cues people use when 
interpreting similar animations (e.g., spatial 
context, Tremoulet & Feldman, 2006). 
Tenenbaum and colleagues have published 
several influential papers on computational 
models of intention ascription (Baker, Saxe, 
& Tenenbaum, 2009; Goodman, Baker, & 
Tenenbaum, 2009; Ullman et al., 2010). The 
core of their approach is modeling such 
ascriptions as Bayesian inferences upon 
Markov Decision Processes (MDPs). For 
example, Baker et al. (2009) designed their 
MDP system to assume that observed 
movement is the result of an agent that is 



behaving rationally. Their system performed 
well given the constraints that the moving 
object can only be an agent with goals of 
going to different locations on a grid. We 
have not followed the MDP approach for two 
reasons. First, we believe that a utility-
oriented interpretation would stretch the 
meaning of “utility” for most cues identified 
in the literature on perception of agency. For 
example, how would utility explain the 
“sweet spot” for object speed relative to the 
background (Morewedge, Preston & Wegner, 
2007)? Or how does utility explain cues 
internal to the observer, such as the reduction 
of attributed agency by people experiencing 
social isolation (Waytz, Cacioppo & Epley, 
2010)? Second, the assumption that the agent 
is rational implies that the system should 
perceive straight-line movement toward a 
potential goal as more agentic than any other 
movement, but Tremoulet and Feldman 
(2006) found just the opposite: Observers 
reported that movement paths towards a goal, 
where there is a change of direction in the 
path, appeared more agentic than a straight 
movement path toward a goal. 

In addition to our six objectives, we also 
want to compare our approach with 
Thibadeau’s (1986) contributions. He used a 
hand-coded representation of the Heider and 
Simmel animation, together with a schema-
based representation of intentions and 
relevant acts, to generate explanations. The 
system was designed to generate only one 
explanation candidate per event, although it 
could join sequential candidates into larger 
candidate narratives. Our approach expands 
on Thibadeau’s in several ways: by adding 
“theory of mind” and physical cause 
explanation types, by extracting an input 
representation directly from an animation 
file, by generating and managing multiple 
candidate explanations, and by providing 
hooks for cue-based confidence-scoring 
functions to guide the ranking of candidates.  

Our claim is that a parser-based 
abduction approach to simulating human 
attribution to animations, with hooks for 
adding functions that simulate the influence 
of cues on explanation confidence, is better-
suited than prior work to the objectives 
outlined above.  
 
Approach 
In order to create a computational system that 
is able to "watch" an animation unfold and 
update its interpretations at the same time-
points and in similar ways as humans, we 
must answer several questions. On what 
kinds of ascriptions should one focus? How 
should the animation be encoded so that the 
system's view is roughly the same as that of 
human participants? (Basically, what is the 
form of a system’s input?) How should the 
system track multiple objects across frames 
in order to determine their movement? How 
should the system generate ascriptions based 
on the movement of objects? How should the 
system connect its explanations in order to 
construct larger coherent narratives like 
people do? The following subsections 
describe how the design of our system, 
Wayang2, addresses these questions. 

Targeted Types of Ascriptions 
On what kinds of ascriptions should one 
focus?  For example, participants in the 
Heider and Simmel experiments reported 
perceiving intentional actions, social roles, 
emotional states, personality traits, and even 
failed plans. Given all of these possible types 
of inferences, what should be the scope of a 
computational model’s output? Rather than 
attempt to produce a model  that can make all 
of the kinds of ascriptions made by 
participants in the Heider and Simmel 
experiment, our initial instantiation focuses 
primarily on inferring intentions. It also 
attributes inanimate physical causes (as 
                                                
2 “Wayang” is an Indonesian word for theater (literally 
"shadow"). 



alternatives to intentions). We focused on 
intentions for three reasons. First, 
understanding people’s intentions is helpful 
for predicting their future actions. Second, 
intention ascriptions are important in moral 
judgments (Hauser, 2006) and legal 
reasoning about past actions. Both of these 
reasons highlight the importance of intention 
in social interaction. Finally, the large body 
of research in AI on plan recognition (i.e., 
intention recognition; e.g., Geib & Goldman, 
2009) and on perception-as-abduction (e.g., 

Feldman, 2007; Shanahan, 2005) provides a 
fertile resource from which we can draw 
when formulating our system. The  targeted 
set of explanation types is similar to the 
three-part distinction among “theory of 
mind”, “goal-directed”, and “random” 
ascriptions used in the psychological work of 
Happé, Frith, and colleagues (e.g.,  Abell, 
Happé, & Frith, 2000), although we replace 
the “random” category with “physical 
causes.” 

To guide our initial selection of 
intentions, we created an animation that both 
highlights “goal-directed” intentions 
(inspired by animations developed by Happé 
and Frith colleagues; e.g., Abell et al., 2000; 
Castelli, Happé, Frith, & Frith, 2000) and 
resembles animations to which people might 
sometimes attribute physical causes rather 
than intentions (see, e.g., Wolff, 2007). We 
also developed a control animation so that we 
could demonstrate that participants 
responding to our intention animation 
weren’t simply conforming to our 
expectations, but instead that they relied on 
cues in the animation itself. We used Adobe 
Flash CS4 Professional to develop the 
animations.  The animation size was 500 x 
400 pixels. The circle diameters were 22 
pixels. The animation ran at 24 frames per 
second. (See the Appendix for further 
animation design considerations.) 

As illustrated in Figure 2, the animation 
involves only one moving object, X. After a 
momentary pause, object X initially moves 
linearly up and to the right, such that V is 
behind X’s direction of movement, while X’s 
trajectory is towards Z and to the left of Y 
(see the top two input frames in Figure 2). 
Wayang generates several explanations that 
are consistent with this initial movement: 

 
1. X intends to be further from V. 
2. X intends to be closer to Z. 
3. X intends to be closer to Y. 
4. A physical force attracts X to (an 

 
Figure 2. Proposed alternating sequence of 
input frames and expectations about object 

locations. (Note: the actual animation has 164 
frames.) 

 



immobile) Z. 
5. A physical force repels X from (an 

immobile) V. 
 

Notice that whereas the first four 
explanations attribute agentic intentions, the 
last two attribute physical causes. Human 
observers, of course, might attribute causes in 
addition to those listed above. 

The dotted outlines in the figure indicate 
predicted locations. In particular, dotted 
circles are predictions that a figure will 
remain stationary, and cone-shaped outlines 
are predictions that an object will move 
linearly or along a curve in a specific 
direction and within a distance. Predictions 
are a natural byproduct of Wayang’s 
explanation-generating process, 
corresponding to parts of a partially-matched 
rule that might match upcoming inputs 
(described below). 

In the remainder of the animation, X 
comes to a momentary halt as it nears Y, then 
continues on a clockwise, circumventing 
trajectory around Y and towards Z, 
eventually contacting Z and staying there 
until the end of the animation (see the bottom 
two input frames in Figure 2). During these 
events, the system adds to its set of 
explanations. In particular, we envisioned 
this sequence of events to result in a 
realization (in human observers and the 
system) that both movements could be 
explained simultaneously by assuming X had 
two competing intentions: to be near Z and to 
avoid Y. 

A pilot study confirmed that people 
generally perceive this animation as we 
predicted. Participants were workers on 
Amazon Mechanical Turk, a crowdsourcing 
marketplace service, who were paid a 
nominal amount. They completed the study 
over the internet. Thus, their displays may 
have varied the absolute size of the 
animations, but the relative sizes and speeds 
of the animation components were 

maintained. We had 38 volunteers watch an 
animation similar to the one described above 
(the “intention animation”) and 35 volunteers 
watch an animation of the same length in 
which the objects had the same initial and 
final locations, but X moved in a straight line 
at a constant speed (the “control animation”). 
Three researchers coded participants’ 
descriptions of what they thought “appeared 
to happen in the animation” (minimum 
Cohen’s κ = .58). Spontaneous ascription to 
X of trying to get to Z occurred in most 
descriptions of the intention animation (26 of 
38), but in only a few descriptions of the 
control animation (7 of 35), χ2 (1, N = 73) = 
17.25, p < .001. Ascription to X of trying to 
avoid Y occurred in many descriptions of the 
intention animation (15 of 38), but was 
absent in those of the control animation (0 of 
35), χ2 (1, N = 73) = 17.39, p < .001. Both 
animations can be viewed at http://csc.ihpc.a-
star.edu.sg/archive/inferringIntent/BRM2011.
htm. 

In sum, the attributions we target for 
Wayang’s output are intentions (or physical 
causes) that explain single movements, plus 
narratives that coherently explain multiple 
intentions and/or physical causes. 

 
Encoding of Space and Time for 
Animations 
How should the animation be encoded so that 
the system's view is roughly the same as that 
of human participants? Human visual 
perception is calibrated to the range of space-
time in which humans live their daily lives. 
Some aspects of an animation, such as small 
loops or kinks in a trajectory, may be below 
human perceptual awareness but “noticeable 
enough” for a computational system given a 
high-precision rendering. In such a case, the 
system's explanation of the animation may 
differ substantially from that of a human 
observer. Since we want to compare the 
output of our computational system with that 
of humans, we need to scale the encoding of 



the animations so that it is roughly 
comparable to that of human perception. 

 Regarding temporal encoding, one useful 
guideline comes from the study of “flicker 
fusion” in psychophysics from which we 
know that humans perceive objects that 
“jump” short distances from one frame to the 
next appear to have continuous and unbroken 
movement when frame rates are increased to 
about 12 frames per second (fps; Anderson & 
Anderson, 1993). Regarding spatial 
encoding, numerous features of the human 
perceptual system, including saccades and 
reduced resolution as one moves outward 
from the center of the fovea, make the 
standard computational approach to image 
encoding–a uniform coordinate grid for the 
entire scene–an imperfect fit for this 
application. Nevertheless, including such 
factors would greatly complicate the system, 
probably without improving it, so we have 
adopted a working assumption that the unit of 
spatial encoding should be 1mm as seen from 
50cm away (i.e., 0.002 degrees of arc). 

Wayang currently processes only position 
information (i.e., frame-by-frame locations of 
otherwise unchanging uniquely-colored 
circles, from which the system can calculate 
movements). Wayang is not given advance 
conceptual information, for example, that the 
shapes represent agents, and animations 
currently use only circles of a single, constant 
size to exclude orientation or other structural 
information. Once Wayang’s rules are able to 
generate explanations solely from positional 
and movement cues, more scenarios will be 
added that involve cues such as orientation, 
iconic resemblance to real-world objects, and 
so on. 

Tracking Objects across Frames 
How should Wayang track multiple objects 
across frames in order to determine their 
movement? For example, if there are three 
identical objects in one frame and three 
identical objects in the next frame but in 

different positions, which objects in the 
second frame correspond to those in the first? 
This is a well-known problem in computer 
vision, and we sidestep it by manually 
labeling all objects in our input frames. (In 
fact, a common technique for handling this 
problem in computer vision, “multiple 
hypothesis tracking” developed by Mann, 
Jepson, & El-Marghi, 2002, is similar to the 
chart-parsing algorithm we use for managing 
explanations across frames.) 

Generating Explanations 
How should Wayang generate explanations 
based on the movement of objects? Although 
we want eventually to accommodate top-
down influences, for our first instantiation 
clearly bottom-up information primarily 
drives this process (because all cues other 
than movement are absent). A hint at what 
intermediary representations people might 
generate bottom-up is provided by the 
participants in Heider and Simmel’s 
experiment, some of whom described the 
action in purely geometric terms. One way to 
interpret these responses in the context of the 
majority of responses is to view geometric 
description as an intermediate step between 
samples of object positions and ascriptions of 
causes – perhaps the minority who gave 
geometric descriptions simply did not go 
beyond the intermediate representation. 
  
Targeted features for the algorithm. A 
search of the AI literature for an algorithm 
that could generate multiple levels of 
description, bottom-up, as new inputs arrive, 
and simultaneously allow for competing 
descriptions led us to text parsers, 
specifically bottom-up incremental chart 
parsers that use a feature grammar. Prevous 
scholars have also seen similarities between 
intention ascription and parsing (e.g., Sidner, 
1985). In essence, chart parsers apply 
dynamic programming to partial parse trees. 
That is, they store partial parse trees both by 



the spans of word tokens that each partial 
parse tree covers and by the grammar rule of 
the highest level of each partial parse tree. 
Basically, such parsers store plausible, 
incomplete interpretations both by the 
observations underlying the interpretation 
and by the rules that they applied to the 
observations to produce the interpretations. 
Typically, text parsers apply their grammar 
rules in as many ways as possible to a 
complete list of word tokens in order to 
identify all conceivable interpretations. Chart 
parsing is relatively efficient when text 
ambiguities support multiple higher level 
interpretations (i.e., parse trees). It stores and 
re-uses lower level parse trees for relevant 
interpretations instead of having to regenerate 
them. This frugality is a key feature of chart 
parsing for our system because it suggests 
more cognitive plausibility over other parsing 
techniques. Next we briefly justify our 
choices of chart-parsing techniques between 
top-down vs. bottom-up, end-marker-driven 
vs. incremental, and categorial vs. feature 
grammars (see Gazdar & Mellish (1989) for 
an overview of these distinctions.) 

A top-down parser assumes it will receive 
an entire clause, and only one clause, and 
tries to locate the parts of the clause among 
the input tokens. A bottom-up parser makes 
no analogous assumptions and must match 
input tokens directly to grammar rules. 
Bottom-up parsing is a close match to our 
targeted scenarios where no explanation 
categories are cued in advance and 
processing must rely on observed 
movements. The interface between input 
word tokens and grammar rules in text 
parsing is part-of-speech categories (POSs) 
such as nouns and verbs. In the domain of 
explaining observed movements, we propose 
that the corresponding interface between 
frame-by-frame object locations and 
explanations is geometric descriptions of 
object trajectories. Unlike POSs in text 
parsing that align one-to-one with input word 

tokens, the proposed trajectory categories 
accumulate two or more observed positions 
into segments of uniform acceleration and 
direction. In Wayang , these categories 
currently include stationary, linear, and 
curved trajectories. 

An end-marker-driven parser 
continuously collects input word tokens but 
waits to apply grammar rules until it 
encounters an end-marker such as a question 
mark. An incremental parser does not wait 
(Schwitter 2003). It applies grammar rules 
after receiving each input token. An end-
marker-driven parser has more context at its 
disposal and can avoid generating spurious 
partial parses that an incremental parser 
might make. But convenient end-markers are 
generally absent in everyday action and in 
animations, so the system described here 
takes an incremental approach. 

A categorial grammar uses only atomic 
categories like nouns (N), verb phrases (VP), 
and clauses (S). A feature grammar is similar 
but allows (1) labeling categories with 
attributes such as person and number, and (2) 
constraining tree construction based on 
attribute values, for example, requiring 
equality between a subject noun and its verb 
on person and number (e.g., both must be 
first person plural). Text parsing typically 
needs only one type of attribute constraint, 
namely, equality (e.g., the number attributes 
of the subject noun and the verb phrase must 
be equal). In contrast, movement parsing 
requires multiple types of constraints.  For 
example, building a linear-trajectory 
description requires evaluating an 
observation based on a vector constraint: If it 
lies along the vector defined by prior 
observations it is part of that linear trajectory; 
otherwise, it is part of a new trajectory. 
Higher levels of description require other 
specialized constraints. For example, 
“chasing” requires a constraint that the 
pursuer changes its direction of movement so 
that it might catch the pursued. Our 



knowledge representation has many types of 
constraints at different levels of description, 
making it resemble a feature grammar more 
than a categorical grammar. 
 
The main algorithm. Wayang uses the same 
parsing algorithm as that given in Gazdar and 
Mellish (1989, pp. 200-1) with some 
extensions. Our algorithm is also similar to 
Geib and Goldman’s (2009) work on the 
PHATT system, which uses plan tree 
grammars for probabilistic plan recognition, 
although PHATT uses only plans of a fixed 
recursion depth. Wayang does not rely on a 
fixed recursion depth because it must be able 
to accumulate arbitrarily-long sequences of 
observation into a coherent plan. 
Furthermore, because PHATT uses a 
Bayesian technique to compute probability 
values as confidence scores for its candidate 
explanations (so they can be ranked relative 
to each other), it must wait for a complete set 
of candidate explanations before it can start 
computing scores (so their sum can be 
normed to 1.0). In contrast, Wayang 
computes scores heuristically, so each of its 
scoring functions can compute its score as 
soon as all its inputs are available. The 
following pseudocode describes Wayang’s 
main algorithm: 

For each new input token (i.e., animation 
frame) do: 

 
1. Generate a predicate calculus 

description of the frame contents3 that 

                                                
3 For example, a frame observed at 41 elapsed msec 
with a white background 167mm x 122 mm containing 
a blue circle centered at (87mm,52mm) with diameter 
13mm and a red triangle centered at (61mm, 35mm) 
with longest inner projection 22mm long and oriented 
at 45°, etc., would be rendered as: 
 
frame([timestamp(41), 

ground(167, 122, color(255, 255, 255)),  
figure(1, position(87, 52), circle(13), color(0, 0, 
255)), 
figure(2, position(61, 35), triangle(22, 45,  

provides the timepoint the frame was 
observed, the dimensions and RGB 
color of the background, and for each 
object, an ID, position, 
shape/orientation/size description, and 
RGB color; 

2. Filter out objects that would be too 
small, too similar in color to the 
background, etc. to be perceptible to a 
human. 

3. Feed the token to the parser. 
4. Parse the token using the knowledge 

base (which is analogous to a set of 
grammar rules) to generate partial parse 
trees (interpretations) with associated 
confidence values. 
 

Wayang has two parts. The first is 
implemented in Java. It handles the first step 
above using the JSwiff 8.0 3rd party package 
for manipulating Flash SWF animation files. 
It then creates an instance of an ECLiPSe 
interpreter to perform the second, third, and 
fourth steps. ECLiPSe (eclipseclp.org) is a 
variant of Prolog that supports constraint 
logic programming. The following sections 
describe the knowledge base, then the parser. 
 
The knowledge base. Wayang’s knowledge 
base uses rules to represent an observer’s 
understanding of the cause-effect structure of 
the world. Wayang’s knowledge base is 
expressed as grammar rules following this 
generic format: 
 

Trigger [Trigger2] 
     =causes=> Effect1 Effect2 … EffectM 
     : Contingency1 Contingency2 … 

ContingencyN 

 
This expression can be read, “The listed 
triggers jointly cause the listed effects if all 
the listed contingencies are satisfied in the 

                                                                        
12, 298, 12, 332, 66), color(255, 0, 0))]) 



current situation.” This format is very similar 
to that of feature grammar rules: 
 
 

Category 
=can be decomposed as=> 
SubCat1 SubCat2 … SubCatM 
: Constraint1 Constraint2 … ConstraintN 

 
For example, the following rule describes 
how a clause can be comprised of a noun 
phrase followed by a verb phrase, where the 
number and person attributes of the phrases 
agree: 
 

clause(Index0, Index2) 
=can be decomposed as=> 
nounPhrase(Index0, Index1, 

NumberNP, PersonNP), 
verbPhrase(Index1, Index2, 

NumberVP, PersonVP) 
: NumberNP == NumberVP, 
  PersonNP == PersonVP. 

 
Figure 3 illustrates how this grammar rule 
might be applied to a sequence of word 
tokens. The Index variables mark reference 
points before and after input tokens, like 
bookends. That is, the first incoming input 
token always sits between indexes 0 and 1, 
the second between indexes 1 and 2, and so 
forth.  The span of input tokens that a 
category label covers, such as the span 
between Index0 and Index2 of the clause, 
permit incremental chart parsers to index 
parse trees so that they can be included in 
more inclusive parse trees if more tokens 
arrive. Wayang’s knowledge base represents 
spans using timepoints (integer msec values) 
rather than integer token indexes. 

Rule R1 below is an example describing 
how a goal to be at a specific location can 
cause the goal-holding agent to follow a 
direct path to that location. “Confidence” 
here refers to Wayang’s confidence in this 

inference, not the agent’s psychological 
confidence. At a higher level (not represented 
here) the agent might want to go to that 
location because, for example, another agent 
is there. 

 
R1: goal( Agent, 
      atPosition(Agent, (X2, Y2), 

Timepoint2), 
      Timepoint1, Timepoint2, 
      Confidence) 
=causes=> 
   linearTrajectory( 
  Agent, (X1, Y1), (X2, Y2), 
  (StartingSpeedX, StartingSpeedY), 
  (ConstantAccelX, ConstantAccelY), 

Timepoint1, Timepoint2) 
: atPosition(Agent, (X1, Y1), Timepoint1), 
  X1 != X2, Y1 != Y2, 
  hasSpeed(Agent, 

(StartingSpeedX, StartingSpeedY), 
Timepoint1), 

  hasMaxAbility(Agent, speed, MaxSpeed),  
  MaxSpeed >= 

sqrt(StartingSpeedX^2  
+ StartingSpeedY^2), 

  hasMaxAbility(Agent,  
acceleration, MaxAccel),  

  MaxAccel >=  

Indexes: 0 1 2

Input tokens: “I” “am” 

noun 
phrase 

verb 
phrase 

clause Category:

Subcategories:

Figure 3. Example of a parse of the clause, “I 
am”, into its components: a noun phrase (“I”) and 

a verb phrase (“am”) that agree in number 
(singular) and person (first). 



sqrt(ConstantAccelX^2  
+ ConstantAccelY^2), 

  ElapsedTime := Timepoint2 – Timepoint1, 
  EndSpeedX := StartingSpeedX  

+ ConstantAccelX*ElapsedTime,  
  EndSpeedY := StartingSpeedY  

+ ConstantAccelY*ElapsedTime, 
  MaxSpeed >=  

sqrt(EndSpeedX^2 + EndSpeedY^2), 
  X2 == X1 + StartingSpeedX*ElapsedTime  

+ 0.5*ConstantAccelX*ElapsedTime^2,  
  Y2 == Y1 + StartingSpeedY*ElapsedTime  

+ 0.5*ConstantAccelY*ElapsedTime^2, 
 
%//Ensure no figures on intercept course 

  ThisTrajectory := 
     linearTrajectory( 

Agent, (X1, Y1), (X2, Y2), 
    (StartingSpeedX, StartingSpeedY), 
    (ConstantAccelX, ConstantAccelY) 
    Timepoint1, Timepoint2), 
  findAll(OtherActiveTrajectory, 
         (OtherActiveTrajectory  

!= ThisTrajectory, 
          onInterceptCourse(ThisTrajectory, 

OtherActiveTrajectory)), 
         []), 
 
  Confidence := fn1(Agent,…,Timepoint2). 

 
Rule R1 says, “If Agent has a goal to be at 
(X2, Y2) at future Timepoint2, and this goal 
persists between the current Timepoint1 and 
Timepoint2, if the contingencies are met, 
then the Agent will follow a linear trajectory 
(with constant acceleration) from its current 
position to the desired position, arriving at 
the desired time.” The contingencies confirm 
that the Agent is not already at the desired 
position, that the Agent is capable of 
traveling fast enough to cover the targeted 
distance in the targeted time, and that the 
agent knows of nothing it might collide with 

on the way (assuming omniscience in this 
case). 

A rule with a physical cause for 
movement might be: 

R2: imbuedWithImpetusVia( 
Attractor, 

         Attractee, 
         linearImpetus((X1, Y1), 

(XMagn, YMagn)),  
attraction,  %// vs repulsion 
Timepoint1, Timepoint2, 

         Confidence) 
=causes=> 
  linearTrajectory( 

Attractee, (X1, Y1), (X2, Y2),   
  (StartingSpeedX, StartingSpeedY), 
  (ConstantAccelX, ConstantAccelY), 
    Timepoint1, Timepoint2) 
: atPosition(Attractee, (X1, Y1), 

Timepoint1), 
  atPosition(Attractor, (X3, Y3),Timepoint1),  
  atPosition(Attractor, (X3, Y3),Timepoint2), 
  X1 != X2, Y1 != Y2, 
  X1 != X3, Y1 != Y3, 
  collinearOrdered((X1, Y1), 

(X2, Y2), (X3, Y3)),  
 

%//Ensure no figures on intercept course 
  ThisTrajectory := 
      linearTrajectory( 

Attractee, (X1, Y1), (X2, Y2), 
    (StartingSpeedX, StartingSpeedY), 
    (ConstantAccelX, ConstantAccelY),  
    Timepoint1, Timepoint2), 
  findAll(OtherActiveTrajectory, 
         (OtherActiveTrajectory  

!= ThisTrajectory, 
          onInterceptCourse(ThisTrajectory, 

OtherActiveTrajectory)), 
         []), 
 
  XMagn := X2 - X1,  
  YMagn := Y2 - Y1, 
  Confidence  



:= fn2(Attractor,…,Timepoint2). 
 

This rule says, “if an object at some position 
(X1, Y1), the Attractee, is imbued with a 
linear impetus of magnitude (XMagn, YMagn) 
by an Attractor object at (X3, Y3) at 
Timepoint1 through Timepoint2, then at 
Timepoint2 the Attractee will have traced a 
linear trajectory ending at some intermediate 
point (X2, Y2), as long as there were no 
collisions along the way.” A rule about 
impetus due to repulsion (e.g., between 
magnets) would be exactly the same except 
its collinear contingency would place the 
repulsor behind the repulsee: 
collinearOrdered((X3, Y3), (X1, Y1), (X2, Y2)). 
The concept of impetus is similar to that of 
force, but impetus is conceived as a property 
given to and held by an object, and it has 
different contingent effects than force does 
(e.g., the removal of an attractor does not 
cancel the impetus it may have imbued in 
another object). 

 Note that some constraints permit some 
flexibility by using configured margins of 
variance. For example, collinearOrdered 
computes a best-fit-line among its point-
coordinate arguments, and computes the 
distance of each point argument from that 
line, which must be within the configured 
margin (currently set at 5mm as a working 
value). 

Unlike the effects or contingencies 
discussed so far, the final contingency of 
each rule computes a confidence score, which 
provides a reason to prefer one candidate 
over others. Confidence-computing 
contingencies always evaluate as true. They 
might depend on any values computed in the 
rule of which they are a part, so they are 
placed last. Unlike a Bayesian approach, the 
confidence functions used in these 
computations are unconstrained at design 
time and can be fitted to cue influences 
revealed by psychological experiments or by 
Bayesian-type considerations such as the 

base rate for the occurrence of the rule’s 
triggers. The choice of which variables are 
relevant and should be passed in as 
parameters is made at rule-implementation 
time. 

The sample rules so far describe how just 
one uniform trajectory can be predicted or 
explained by a causal trigger. To 
accommodate arbitrarily-long observation 
sequences under a single explanation (just as 
real-life plans and recipes are comprised of 
heterogeneous and/or recursive steps), some 
Wayang rules have goal states (and other 
unobservable states) as effects. For example, 
the following rule can be used with the 
preceding goal rule to explain that two 
aligned linear trajectories (e.g., an agent first 
accelerating to its stable speed and then 
continuing at that speed) could mean the 
agent wanted all along to go to the final 
observed position: 

 
R3: goal(Agent, 

atPosition(Agent, (X3, Y3), 
Timepoint3), 

          Timepoint1, Timepoint3, 
          Confidence3) 
=causes=> 
   goal(Agent, 
         atPosition(Agent, (X2, Y2), 

Timepoint2), 
         Timepoint1, Timepoint2, 
         Confidence1), 
  goal(Agent, 
         atPosition(Agent, (X3, Y3), 

Timepoint3), 
         Timepoint2, Timepoint3, 
         Confidence2) 
: atPosition(Agent, (X1, Y1), Timepoint1), 
  atPosition(Agent, (X2, Y2), Timepoint2), 
  X1 != X2, Y1 != Y2,  
  collinearOrdered((X1, Y1),  

(X2, Y2), (X3, Y3)), 
  Confidence 

:= fn3(Confidence1,…,Timepoint3). 



 
Note that (X3, Y3) can be the same as (X2,Y2) 
because an alternate way of satisfying R3 
would be that the first goal corresponds to 
moving to reach a destination and the second 
goal corresponds to stopping at the 
destination. 

Finally, the Wayang rule format allows 
for an optional second trigger, Trigger2. The 
prototypical case of a situation requiring two 
causal triggers is a curved trajectory, where 
an explanation in terms of linear forces 
would require one force to explain the 
“forward” component of movement, plus a 
second force to explain the “sideways” 
component of the same movement. 
Explanations involving goals instead of 
forces or impetus also sometimes need 
simultaneous causes: A bullied child might 
go to school while steering wide of a bully. 

We shall return to these sample Wayang 
rules later to explain how they are used to 
generate candidate explanations for the initial 
frames of the animation in Figure 2. 

In addition to encoding Wayang’s rules to 
make them useful for a parser (to generate 
abductions), we also deliberately encoded 
them to support potential use for generating 
predictions by simulating a chain of causes 
(via deduction) or so they could potentially 
be used by a planner. This helps avoid 
unintentionally tailoring the rules so that they 
would be applicable only for abduction, 
which runs the risk of overlooking important 
contingencies. For example, a rule meant 
only for abduction might neglect to include a 
contingency such as an agent’s maximum 
speed (perhaps because speed is not salient in 
the examples used by the writer of the 
abductive rule to guide its formulation.) But 
if one adopts a discipline of always asking 
during rule implementation, “What might I 
be limited by, if I were to try enacting this 
goal or leveraging this physical cause?” one 
is more likely to avoid such oversights. Geib 

and Goldman (2009) adopt the same 
discipline for a similar reason. 
 
The parser algorithm. An observer can see 
effects, but must infer their causes. Similarly, 
the parser takes in observed effects and, 
using the knowledge base, infers (i.e., 
abduces) their causes. The algorithm is 
identical to that of Gazdar and Mellish (1989, 
pp. 200-1) except for these changes: 
 
1. It does not require all tokens to be 

available at the outset. 
2. It permits an optional second item on the 

left-hand side of rules. 
3. It permits a rule to have a list of 

contingencies, all of which must be 
satisfied (or “delayed” if a contingency 
depends on a later, to-be-matched effect) 
for any matching attempt to succeed. 

4. It allows confidence scores computed by 
rules to be propagated to other rules. 

5. Because figures in a frame description 
might be ordered differently than they are 
in a relevant rule’s conditions, and 
because multiple subsets of figures might 
match, the matcher tries different 
permutations for any effect represented as 
a list as needed. 

6. There are cosmetic changes in the 
contents of output parse trees (referred to 
as Matched lists). 

 
In rules that have multiple effects, there will 
be times when only some of the initial effects 
will have been matched to observations. The 
latter unmatched effects represent predictions 
about upcoming inputs. Notice that in this 
case in which some effects have not yet been 
matched, some contingencies may have 
unbound variables in their arguments. 
Ideally, such contingencies should be 
considered satisfied for the moment but 
should be re-evaluated if later effects are ever 
matched and thus provide bindings for all 
arguments. We were able to implement this 



ideal by using the constraint-logic 
programming language, ECLiPSe, mentioned 
above. It allows predicates to be declared 
“delayable” until a list of variables all have 
bindings. The delayable-predicates feature 
also allows us to implement arbitrarily-
complex contingencies as needed, as 
described before. A contingency may be 
delayed up to the point when all its effects 
have candidate matches, at which point all 
variables have been bound, so all 
contingencies can be evaluated and a 
decision made as to whether all the effect 
matches succeed. 

The following pseudocode describes 
Wayang’s parser. 

 
Initialize the set of chart “edges” (i.e., 

partially and completely matched rules) 
to [ ] (i.e., empty list). 

Initialize the CurrentSpanEnd (i.e., the 
position after the most recent token, 
equivalent to a count of tokens seen so 
far) assertion to zero. 

For each new input token (i.e., 
frame(FrameItems) ) do 

Triggers := [FrameItems]; 
Confidence := 1.0; 
CurrentSpanEnd1 := CurrentSpanEnd; 
NextSpanEnd := ++CurrentSpanEnd; 
MatchedEffectsItems := 
 [FrameItems]; 
UnmatchedEffectsItems := [ ]; 
addEdge(CurrentSpanEnd1, 

 NextSpanEnd, 
 Triggers, Confidence,  

UnmatchedEffectsItems, 
MatchedEffectsItems). 
 

And the addEdge function is defined as: 
 

addEdge(SpanEnd0, SpanEnd1, 
             Triggers, Confidence, 
             UnmatchedEffectsItems, 
  MatchedEffectsItems) :- 

If there is already a matching edge4 
(ignoring confidence scores) for the 
given arguments, then do nothing 

else if UnmatchedEffectsItems is empty, 
then 
Add an edge using the given arguments; 
For each way of matching any Rule 

whose leftmost Effects item matches 
something in Triggers (allowing for 
within-effect permutations) do 

Instantiate Rule using Triggers; 
Triggers2 := extractTriggers(Rule);  
Confidence2 := extractConf(Rule); 
Unmatched2 := 

extractUnmatched(Rule); 
addEdge(SpanEnd0, SpanEnd0, 

Triggers2, Confidence2, 
Unmatched2, []); 

For each Edge covering some earlier 
SpanEnd00 to SpanEnd0 whose 
leftmost unmatched Effects item 
matches something in Triggers 
(allowing for within-effect 
permutations) do  

Instantiate Edge using Triggers; 
Triggers3 := extractTriggers(Edge);  
Confidence3 := 

Confidence*extractConf(Edge);  
Unmatched3 := 

tailOf(extractUnmatched(Edge)); 
Append extractTriggers(Edge) and 

extractMatched(Edge) to 
MatchedEffectsItems, and assign 
to Matched3; 

addEdge(SpanEnd00, SpanEnd1, 
Triggers3, Confidence3, 
Unmatched3, Matched3); 

else 
Add an edge using the given arguments; 
For each Edge starting from SpanEnd1 

(and reaching to some larger 

                                                
4 “An edge” means a stored 6-tuple of <SpanEnd0, 
SpanEnd1, Triggers, Confidence, 
UnmatchedEffectsItems, MatchedEffectsItems> 



SpanEnd2) that has no unmatched 
Effects items but one of whose 
Triggers matches the leftmost entry in 
UnmatchedEffectsItems (allowing for 
within-effect permutations) do  

Instantiate Edge using Triggers; 
Confidence4 := Confidence; 
 %//no change 
Unmatched4 := 

tailOf(UnmatchedEffectsItems);  
Matched4 := 

extractMatched(Edge); 
addEdge(SpanEnd0, SpanEnd2, 

Triggers, Confidence4, 
Unmatched4, Matched4). 

 
Our overall design goal for the system is that, 
after processing each input frame, the edge(s) 
with highest confidence score be the same as 
the preferred explanation(s) that human 
observers, on average, would offer if the 
animation were stopped at that point and they 
were asked what they saw. In this way, the 
algorithm and knowledge base constitute a 
cognitive model of how explanations 
(specifically, those that invoke intentions or 
physical causes) are constructed and ranked 
as evidence unfolds. 

As brief examples of how Wayang’s rules 
would be used to generate explanations, 
consider the control and target “intention” 
animations used in our pilot. The next section 
provides a walk-through of the (simpler) 
control animation, and the section following 
it provides a walk-through of the target 
animation. 
 
Sample walk-through: Control animation. 
The events in the control animation might be 
summarized as: 
 

1. X and V are near the southwest corner, 
Y is near the center, and Z is near the 
northeast corner (frame 1) 

2. X moves northeast at constant speed 
(frames 2-164) 

3. X is in contact with Z (frame 164) 
 
Assume there are grammar rules, not shown 
here, that compare adjacent animation frames 
and generate descriptions of stationary, 
linear, and curved trajectories. After the 
second frame, there would be a description of 
object X moving linearly up and to the right 
(as well as descriptions of all other objects 
remaining stationary). That observation of a 
linear trajectory matches the leftmost (and 
only) effect in both the goal-based and 
impetus-based rules above (i.e., R1 and R2, 
respectively). Bottom-up incremental parsers, 
such as Wayang’s, take an input token and 
search for grammar rules whose leftmost 
unmatched component (on the right-hand 
side of the rule) matches the input token. If 
the parser supports feature grammars, as 
Wayang’s does, then after such a match, the 
parser tries to evaluate all the contingencies 
of the candidate rule. In this example, the 
contingencies of the goal-based rule are 
trivially satisfied by the properties of the 
trajectory itself (i.e., its starting position and 
time are different from its ending position 
and time, respectively), and by whether the 
speed of the observed movement is within the 
known abilities of the agent (perhaps using 
categorical knowledge of agents), and by the 
absence of any potentially colliding object. 
The contingencies of the impetus-based rule 
are also satisfied, but only because there is an 
object, Z, in a position that makes it a 
plausible attractor. So, after the second frame 
of the animation, there are two candidate 
explanations. 

 Actually, from the parser’s point of view, 
the candidate explanations are each an edge 
added in different iterations of the processing 
loop, and after adding any edge the parser 
tries to expand on it (within the same loop 
iteration) by calling addEdge. When addEdge 
is called on the edge created from the goal-
based rule R1 (i.e., edge2 in Figure 4a), it 
finds that the goal matches the leftmost effect 



of rule R3. The only contingency of R3 that 
can be evaluated at this point, because all of 
its variables can be bound, is the first one, 
which is trivially satisfied by matching 
against X’s position in the first frame. All 
other contingencies must be delayed. Thus, 
the match succeeds and a new edge (i.e., 

edge3 in Figure4a) is created showing that 
the first effect of R3 is satisfied (for the 
moment) and that the second effect, also a 
goal, is predicted. 

Similar to R3 is a rule R4 (not shown) 
that says two aligned linear trajectories, each 
explained by an impetus to move in the same 
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direction with similar (but perhaps decaying) 
magnitude, can be joined into a single larger 
span using the impetus as the common 
explanation. And similar to the way the 
parser expands on the R1-based edge by 
creating an edge based on a partially-satisfied 
R3 (i.e., edge3 in Figure 4a), the parser 
expands on its R2-based edge (i.e., edge4 in 
Figure 4b) by creating an edge based on a 
partially-satisfied R4 (i.e., edge5 in Figure 
4b). The not-yet-satisfied part of the R4-
based edge represents a prediction that X will 
continue to move in a way that suggests it 
possesses a specific impetus. 

 When the third frame arrives, the same 
flow of inference using R1 and R2 repeats, 
resulting in two explanations, both spanning 
the timepoints represented by frames 2 and 3. 
These explanations correspond to edge7 
(Figure 4c) and edge9 (Figure 4d). These 
edges satisfy the unmatched second effects in 
edges 3 and 5, respectively. Fulfilling those 
edges leads to more calls to addEdge, which 
results in partially-satisfied edge8 (Figure 4c) 
and edge10 (Figure 4d). 

 Notice how the recursive rules R3 and 
R4 allow the system to accumulate 
arbitrarily-long sequences of consistent 
observations into competing explanations. It 
is technically possible to achieve the same 
output using just the non-recursive R1 and 
R2 but with recursive trajectory rules that 
generate a representation of a longer 
trajectory for each new observation. But 
using recursion at the level of goal and 
impetus concepts permits connecting 
inconsistent trajectories, such as an agent 
moving to a target and then remaining 
stationary there. Furthermore, it permits the 
confidence value associated with each goal or 
impetus explanation to be based at least in 
part on the confidence value of any goal or 
impetus explanation that fed into it. We 
believe that the confidence that people invest 
in their explanations at a late stage often 
depends on the confidence they adopted in 

earlier stages. Therefore, Wayang’s rules are 
designed to be recursive at the level of 
explanatory concepts that can carry 
confidence values. 

 Wayang repeats the constructive steps 
described above for the first three frames of 
the control animation to as many following 
frames as it can, ultimately reaching frame 
164 (i.e., the last frame in the events listed 
above). In doing so, it builds one goal-based 
explanation and one impetus-based 
explanation that each cover that entire span. 

How do the confidences of the two 
longest-spanning explanations so far 
compare? We are planning to do studies that 
will determine what events people identify in 
our animations, where the event boundaries 
are, what explanation(s) are given for each 
event (if any), and what the typical 
confidence is in each explanation. But in the 
meantime, we are relying on introspection 
and group consensus, which tells us that they 
are both highly likely, say, 0.8 for the goal-
based explanation on a [0.0 … 1.0] real-
valued scale of confidence, and 0.7 for the 
impetus-based one. One reason for these 
confidence levels to be similar is that the two 
candidate causes seem likely to occur 
frequently and at similar rates, at least in this 
simplified animated world (i.e., the base rates 
seem the same). In general, we imagine 
confidence functions will tend to asymptote 
toward higher values than their initial value, 
assuming no cues appear that would push the 
confidence higher or lower. In this case, a 
reasonable confidence function might start at 
0.6 and asymptote toward 0.9 as the number 
of consistent frames approaches infinity. The 
reason the impetus-based explanation has 
lower confidence is that X does not move 
directly toward the center of Z. This variance 
is within the margin permitted by the 
collinearOrdered constraint, so the rule is 
applicable, but the confidence function 
nevertheless lowers the confidence due to the 
doubt such a cue induces. 



Because X comes into contact with Z in 
frame 164, rules R1 and R2 fail to activate 
because they both have contingencies 
requiring no contact. Instead, a different set 
of rules (not shown) having contingencies 
that require contact become activated. One 
subset of these rules is impetus-based and 
explains a sequence of events in which the 
magnitude of the impetus is great enough that 
X bounces off Z (in ever smaller bounces as 
the magnitude decreases). Another subset 
explains a sequence of events in which the 
magnitude is small enough that X stops once 
it is in contact with Z. Depending on the 
magnitude abduced using rule R2 during 
frames 2-164, Wayang will activate one 
subset of rules or the other, and the 
unmatched effects of the rules represent 
predictions of what would happen in later 
frames if the animation did not end at frame 
164.  
 
Sample walk-through: Target animation. 
Events in the target animation (see Figure 2 
again) might be summarized as: 
 

1. X and V are near the southwest corner, 
Y is near the center, and Z is near the 
northeast corner (frames 1-24) 

2. X accelerates northeast with a very 
slight side-to-side motion (frames 25-
67) 

3. When nearing Y, X decelerates 
northeast with a very slight side-to-side 
motion (frames 68-78) 

4. X is stationary while a moderate 
distance from Y (frames 79-87) 

5. X follows a curved path north then 
northeast at constant speed (frames 88-
139) 

6. X is stationary and in contact with Z 
(frames 140-164) 

 
Notice that the initial placement of figures is 
the same in the two animations, that only X 

moves in both, and that the number of frames 
is the same. 

To explain why X remains stationary in 
frames 2-24 in this animation (and why V, Y, 
and Z remain stationary in both animations), 
rules similar to R1 and R2, but much simpler, 
can be used. For example, rule R5 below 
says, “If Agent has a goal to be at (X1, Y1) at 
future Timepoint2, and this goal persists 
between the current Timepoint1 and 
Timepoint2, then if the contingencies are 
met, the Agent will remain stationary at least 
until the desired time.” The contingencies 
confirm that the Agent is actually already at 
the desired position, and that the agent knows 
of nothing that might collide with it during 
that timespan (assuming omniscience in this 
case). 

 
R5: goal(Agent, 
          atPosition(Agent, (X1, Y1), 

Timepoint2), 
          Timepoint1, Timepoint2, 
          Confidence) 
=causes=> 
   stationaryTrajectory( 

Agent, (X1, Y1), 
Timepoint1, Timepoint2) 

: atPosition(Agent, (X1, Y1), Timepoint1), 
 

%//Ensure no figures on intercept course 
  ThisTrajectory := 
     stationaryTrajectory( 

Agent, (X1, Y1), 
Timepoint1, Timepoint2), 

  findAll(OtherActiveTrajectory, 
      (OtherActiveTrajectory 

!= ThisTrajectory, 
       onInterceptCourse(ThisTrajectory, 
                              OtherActiveTrajectory)), 
      []), 
 

    Confidence := fn5(Agent,…,Timepoint2). 
 



When used together with recursive goal-
based rule R3, rule R5 can be used to explain 
arbitrarily-long sequences of remaining 
stationary as fulfilling a goal to be in the 
agent’s current position. 

 An impetus-based rule to explain 
remaining stationary would be similar to rule 
R2, but again, simpler. It could be used 
together with recursive impetus-based rule 
R4 to explain arbitrarily-long sequences of 
remaining stationary as an object that is 
primarily under the influence of an inertia-
like impetus to remain in place. The goal- 
and impetus-based explanations to remain 
stationary seem inherently equally likely, and 
there are no cues (yet) to suggest favoring 
one over the other, so the confidence 
functions of these rules would compute 
similar confidence values for the 
explanations covering each subspan. 

 Our walk-through of the target animation 
example now reaches a moment of decision, 
the change in X from remaining stationary to 
accelerating northeast, starting in frame 25. 
Wayang has no rules for explaining a change 
from a period of remaining stationary to a 
period of moving in terms of physical causes, 
because it requires us to make an appreciable 
effort to deliberate and envision such 
explanations. If we did add such rules, they 
might require hypothesizing unseen actions 
such as tilting the table and thus changing the 
angle of gravity (assuming the action is 
imagined to take place on a tabletop), or that 
Z is an electromagnet that has just been 
switched on, and so forth, and all such rules 
would be given corresponding low initial 
confidence scores with slow-growing 
functions. Goal-based explanations for the 
change come to mind more easily, albeit with 
low initial confidence. Specifically, everyday 
agents often change their goals, and although 
such an explanation is more compelling if 
one has an idea of what motivated the goal 
change, it does not seem necessary to have a 
specific cause in mind. For example, in future 

work when we allow figures to be more 
visually complex, including having eyes that 
indicate gaze direction, if the eyes point 
toward an object for the first time just before 
the agent moves toward that object, the 
specific cause might be taken to be that the 
agent was not previously aware that the 
object was in its position and wants to be 
near it. 

 Rule R6 below implements the concept 
of “goal change for no specific reason” idea 
outlined above. It provides no constraints on 
the kinds of goals that an agent might change 
to, and thus is not helpful for making 
predictions about such goals. Its role is to 
connect whatever goal-based explanation 
emerges from later evidence (if any) with the 
just-completed goal-based explanation. The 
confidence value of such a non-specific goal-
change explanation would largely depend on 
the lower of the two confidence values of the 
explanations it connects. 

 
R6: goalChanged(Agent, 
              goalState1, Timepoint2, 

 goalState2, 
              Timepoint1, Timepoint3, 
              Confidence3) 
=causes=> 
   goal(Agent, goalState1, 

Timepoint1, Timepoint2, 
Confidence1), 

  goal(Agent, goalState2,    
Timepoint2, Timepoint3,   
Confidence2) 

: goalState1 != goalState2, 
  Confidence 

:= fn6(Confidence1,…,Timepoint3). 
 

We are still at frame 25, but the task is now 
to explain all the remaining frames. The 
frames up to 79 show a sequence of linear 
trajectories that alternately aim above and 
below Z, forming a gradual zigzag path. In 
the first portion of the path, X is accelerating, 



and in the latter portion, decelerating. As 
long as the angle points of the zigzag are 
within the margin of variance for co-linearity, 
the initial portion of constant acceleration can 
be explained using rules R1 and R3, as can 
the latter portion of constant deceleration. 
Furthermore, the zigzag motion is suggestive 
of walking, and thus provides a cue that 
should boost the confidence level of this 
explanation in terms of an agent wanting to 
get to a location. Thus, Wayang would have 
higher confidence in this goal explanation 
than for a purely straight path of same length 
(such as appears in sub-sequences of the 
control animation). Finally, the acceleration 
portion and the deceleration portion can also 
be joined using rule R3, and since this change 
in acceleration also provides a cue for agency 
(see the “slow in and slow out” animation 
technique of Thomas and Johnson, 1995), it 
motivates an increase in confidence level 
over the confidence levels of its constituent 
explanations (i.e., the acceleration and 
deceleration portions). 

Over the same sequence of frames, the 
parser also tries to apply the impetus-based 
rules. But the only times rule R2 is satisfied 
are for the linear trajectories that aim below 
Z where Y is a plausible attractor. There are 
no plausible attractors or repulsors, nor any 
colliding moving objects, that would 
plausibly explain the linear trajectories that 
aim above Z. Thus, there are unexplained 
gaps, and there is no recursive rule to bridge 
those gaps. 

Starting in frame 79, X stops and then 
remains still until frame 87. In isolation, this 
sequence can be explained equally well using 
either the goal or moving-impetus concepts, 
just as frames 1-24 were. But the impetus-
based explanation cannot be connected to any 
similar explanation from earlier in the 
animation, while the goal-based explanation 
can be connected using rule R3 to infer that 
the earlier accelerating-then-decelerating 
zigzag northeast followed by this period of 

remaining still are both part of a goal to be at 
the current position. 

Starting in frame 88, we find a second 
instance of the relatively-hard-to-explain case 
of an object starting to move after remaining 
stationary for awhile. Furthermore, the 
object, X, moves along a kind of trajectory 
not seen before in this animation—a curved 
one. In some scenarios, a curved trajectory is 
explained using a single cause. For example, 
as part of their review of McCloskey’s 
impetus studies, Kozhevnikov and Hegarty 
observe that: 

many people also believe that an object 
constrained to move in a curved path 
acquires a curvilinear impetus that causes 
the object to follow a curved trajectory for 
some time after the constraints on its 
motion are removed (2001, p. 441) 

In Wayang, such an explanation might be 
generated by a rule linking a single trigger, 
an impetus that imparts curved motion to the 
object possessing the impetus, to effects 
represented as curved trajectories. The 
contingencies of such a rule would require 
that the object be moving outside of any 
enclosure but that just previously it was 
travelling in a narrow enclosure whose 
curvature matches its current arc. Yet in this 
case there is no such enclosure, and instead 
rules suggesting two simultaneous triggers 
are available. As mentioned earlier, 
Wayang’s rule format provides an optional 
second trigger, which was inspired by curved 
paths like this one. For example, rule R7 
below describes how two physical forces, 
oriented perpendicular to each other, can 
cause an object under the influence of both to 
follow a curved trajectory: 
 



R7: exertForceUpon(Attractor, 
attraction, 
MovedObj, 
Timepoint1, 
Timepoint3, 

                Confidence), 
      exertForceUpon(Repulsor,  

repulsion,  
MovedObj,  
Timepoint1, 
Timepoint3, 
Confidence) 

=causes=> 
  curvedTrajectory( 

MovedObj, 
secondToLastPosition( X2,Y2), 
lastPosition(X3,Y3), 
latestProjectedCircle(Xc,Yc,R), 
(StartingSpeedX1, StartingSpeedY1), 
(ConstantAccelX2, ConstantAccelY2), 
Timepoint1, Timepoint3) 

: atPosition( %//1st of 3 pts defining curve 
MovedObj, (X1, Y1), Timepoint1), 
 

  atPosition( %//Attractor remains still 
Attractor, (X4, Y4), Timepoint1),  

  atPosition( 
Attractor, (X4, Y4), Timepoint2),  

  atPosition( 
Attractor, (X4, Y4), Timepoint3),  
 

  atPosition( %//Repulsor remains still 
Repulsor, (X5, Y5), Timepoint1),  

  atPosition( 
Repulsor, (X5, Y5), Timepoint2),  

  atPosition( 
Repulsor, (X5, Y5), Timepoint3),  
 

  %//Curve points toward Attractor, with 
  %//  Repulsor underneath. 

  convexOrderedVerticesPolygon( 
5, %// 5 vertices; no points coincide 

    [(X1,Y1),(X2,Y2),(X3,Y3),(X4,Y4),(X5,Y5)]),  
 

  ThisTrajectory := 
     curvedTrajectory( 

MovedObj, 
secondToLastPosition(X2,Y2), 
lastPosition(X3,Y3), 
latestProjectedCircle(Xc,Yc,R), 
(StartingSpeedX1, StartingSpeedY1), 
(ConstantAccelX2, ConstantAccelY2), 
Timepoint1, Timepoint3), 

  findAll(OtherActiveTrajectory, 
   (OtherActiveTrajectory 

!= ThisTrajectory, 
    onInterceptCourse(ThisTrajectory, 

OtherActiveTrajectory)), 
          []), 
 
 euclideanDistance(X1,Y1,X4,Y4, 
           Distance1_4), 
 euclideanDistance(X2,Y2,X4,Y4, 
           Distance2_4), 
 euclideanDistance(X3,Y3,X4,Y4, 
           Distance3_4), 
 euclideanDistance(X1,Y1,X5,Y5, 
           Distance1_5), 
 euclideanDistance(X2,Y2,X5,Y5, 
           Distance2_5), 
 euclideanDistance(X3,Y3,X5,Y5, 
           Distance3_5), 
 Distance3_4 =< Distance2_4  
    =< Distance1_4, 
 Distance3_5 >= Distance2_5  
    >= Distance1_5, 
 Confidence := 
    fn7(Attractor,…,Timepoint2). 
 
The contingencies above require that there be 
one object positioned relative to the 
trajectory so that it could be an attractor, 
another object positioned so it could be a 
repulsor, and that nothing is expected to 
collide with the path. Specifically, the 
convexOrderedVerticesPolygon contingency 
requires that the position of the potential 
attractor be “ahead” of the curved path, and 



that the position of the potential repulsor be 
“under” the path. In the target animation, 
object Z has a position relative to X’s curved 
trajectory that makes it as plausible attractor, 
and Y’s position simultaneously makes it a 
plausible repulsor, so rule R7 can be used to 
explain the three frames starting at frame 88: 
88, 89, and 90. When a fourth frame arrives, 
R7 can again explain it and the two that 
preceded it: 89, 90, and 91. In this way, 
overlapping sequences of three frames are 
explained, and it would make sense to create 
a recursive rule (not shown here) to collect 
such sub-sequences to cover entire coherent 
curves. For this animation, the rule could 
cover all frames of the curved path, frames 
89-139, under a single explanation that uses 
two simultaneous triggers. 

 Starting at frame 140, X becomes 
stationary and remains that way through the 
end of the animation at frame 164. This 
stationary trajectory can be explained using 
impetus-based rules in the manner already 
described for the stationary episode between 
frames 1 and 24. Thus over the entire 
animation, some of the trajectories can be 
explained using the impetus concept (or, 
similarly, by forces), yet others cannot be 
because there are no objects that could serve 
as plausible attractors, repulsors, or colliding 
objects. Furthermore, there are no 
explanations that cover multiple trajectories 
in sequence; there are only piecemeal 
physical cause explanations across the whole 
animation. 

 In contrast, goal-based explanations can 
cover the entire animation. As described so 
far, there is a goal-based explanation for the 
initial stationary period, and a second one for 
the zigzag movement to the northeast and its 
coming to rest. Connecting these two is a 
weaker goal-change explanation. And for the 
current curved section, an explanation that 
quickly comes to mind (at least to us) is that 
X wants to get to a position near Z while 
avoiding Y. Such a two-goal explanation is 

readily formulated in a two-trigger rule, R8 
below, similar to R7 above. 

 
R8: goal( Agent, 
           atPosition(Agent, (X4, Y4), 

Timepoint3), 
           Timepoint1, Timepoint3, 
           Confidence), 
      goal( Agent, 
           avoid(Agent, ThreatObj, 

Timepoint3), 
           Timepoint1, Timepoint3, 
           Confidence) 
=causes=> 

curvedTrajectory( 
Agent,  
secondToLastPosition(X2,Y2), 
lastPosition(X3,Y3), 
latestProjectedCircle(Xc,Yc,R), 
(StartingSpeedX1, StartingSpeedY1), 
(ConstantAccelX2, ConstantAccelY2), 
Timepoint1, Timepoint3) 

: atPosition( %//1st of 3 pts defining curve  
Agent, (X1, Y1), Timepoint1), 
 

  atPosition( %//ThreatObj remains still 
ThreatObj, (X5, Y5), Timepoint1), 

  atPosition( 
ThreatObj, (X5, Y5), Timepoint2),  

  atPosition( 
ThreatObj, (X5, Y5), Timepoint3), 
  

%//Curve points toward (X4,Y4), with 
 %// ThreatObj underneath 

  convexOrderedVerticesPolygon(  
    5, %// 5 vertices; no points coincide 
    [(X1,Y1),(X2,Y2),(X3,Y3),(X4,Y4),(X5,Y5)]),  
 
  ThisTrajectory := 
      curvedTrajectory( 

Agent, 
secondToLastPosition(X2,Y2), 
lastPosition(X3,Y3), 
latestProjectedCircle(Xc,Yc,R), 



(StartingSpeedX1, StartingSpeedY1), 
(ConstantAccelX2, ConstantAccelY2), 
Timepoint1, Timepoint3), 

  findAll(OtherActiveTrajectory, 
   (OtherActiveTrajectory 

!= ThisTrajectory, 
   onInterceptCourse(ThisTrajectory, 

OtherActiveTrajectory)), 
          []), 
 
 euclideanDistance(X1,Y1,X4,Y4, 
           Distance1_4), 
 euclideanDistance(X2,Y2,X4,Y4, 
           Distance2_4), 
 euclideanDistance(X3,Y3,X4,Y4, 
           Distance3_4), 
 euclideanDistance(X1,Y1,X5,Y5, 
           Distance1_5), 
 euclideanDistance(X2,Y2,X5,Y5, 
           Distance2_5), 
 euclideanDistance(X3,Y3,X5,Y5, 
           Distance3_5), 
 Distance3_4 =< Distance2_4  
    =< Distance1_4, 
 Distance3_5 >= Distance2_5  
    >= Distance1_5, 
 Confidence := fn8(Agent,…,Timepoint2). 
 
The parser can apply rule R8 to successive, 
overlapping sequences of frames for as long 
as the movement follows a consistent curve 
at constant acceleration. And these mini-
explanations can be collected into larger and 
larger spans by a recursive rule that is 
tailored to two-goal explanations (not 
shown). Starting at frame 140, the curved 
movement ends and X remains stationary 
until frame 164 when the animation itself 
ends. We have already described how 
arbitrarily-long stationary periods can be 
explained in terms of goals, and how goal-
directed movement followed by goal-directed 
remaining still can be given an overall goal-
based explanation that the agent wanted to be 
in the final position all along. For this 

curving-and-then-stopped portion to be 
connected to the preceding zigzagging-and-
then-stopped, the best option discussed so far 
is a weak goal-change explanation. 
Explaining the entire animation in goal terms 
requires two such goal-changes, because 
there are two times when remaining still is 
followed by movement: Once when X’s 
initial stillness is followed by the zigzag 
northeast, and a second time when the stop 
after the zigzag is followed by the curved 
path. But in retrospect, after watching the 
entire animation, one might infer that the first 
pause might be due to X not noticing at first 
that Z is present, or that Z is desirable, and 
the second pause might be due to X not 
noticing that Y lies on its path to Z until very 
near Y, or that Y is undesirable, and having 
to momentarily reassess options. These 
explanations relying on assumptions that an 
agent did not notice something right away 
can be formulated as specializations of the 
goal-change rule described earlier – they 
provide specific reasons for the initial goal to 
change. 

It will be interesting to see in our planned 
event segmentation studies whether 
participants mark event boundaries at these 
pause points and whether they give 
explanations that strongly or weakly connect 
the events on either side. If participants do 
provide strong connecting explanations, it 
would motivate adding specializations of the 
goal-change rule as just described. 

Two other explanations were listed 
earlier, "X intends to be further from V" and 
"X intends to be closer to Y". To generate 
these, the system uses a goal-based rule about 
avoidance, not shown here, and rule R1, 
respectively. The avoidance rule's confidence 
function has a lower initial value than R1, 
because we believe people are biased toward 
approach explanations over avoidance ones, 
so "X intends to be further from V" always 
has a lower confidence score than "X intends 
to be closer to Z". The interpretation "X 



intends to be closer to Y" fares as well as "X 
intends to be closer to Z" until the curved 
movement begins, at which point there is no 
matchable rule to carry this interpretation 
further. 

Composing More Inclusive Explanations 
As we have just discussed, people sometimes 
connect actions and intentions into larger 
coherent narratives. How should the system 
connect its explanations in order to construct 
more overarching ones? In Wayang, the 
preferred solution is to use recursive 
grammar-like rules that accumulate mini-
explanations that cover a few frames into 
explanations that cover arbitrarily long 
sequences. Some of the recursive rules are 
tailored to apparently consistent behavior 
such as spans of remaining stationary or 
moving linearly or along a curve. Other 
recursive rules are tailored to join apparently 
inconsistent behavior such as moving and 
then coming to a stop into consistent patterns 
that a typical person might perceive. In 
Wayang, there are more goal-based rules for 
apparently inconsistent behavior than ones 
based on physical causes, because the 
physical forces modeled by the system either 
require contact with another object or exert 
uniform influence throughout the space (i.e., 
attraction and repulsion), and thus the rules 
must impose narrower constraints than goal-
based ones do. 

 Despite these differences in Wayang’s 
goal- and impetus-based rules, it may not be 
obvious that the two kinds of rules can make 
dramatically different predictions about a 
single object, yet they do. One reason it may 
not be obvious is that in the sample 
animations, only one object, X, moves. 
Imagine X and Z in similar starting positions, 
but in one new animation Z is an object that 
moves northwest and which attracts object X. 
In this case, X mindlessly follows Z and will 
always be “behind” it. Then imagine X is an 
agent interested in object Z. In this case, X 

might anticipate Z’s heading and attempt to 
head it off to catch up with it. For many 
starting configurations of object placements, 
paths that emerge from “mindlessly 
following” versus “heading off” are easily 
distinguished, and “heading off” in particular 
provides a high-confidence cue that X is an 
agent. Finally, imagine a animation where 
both X and Z are agents, and like before X is 
interested in Z but in this case Z wants to 
avoid X. Like before, X might try to 
anticipate Z’s direction and head it off, but Z 
will move to counter that, which X should 
notice, and now X must take Z’s likely plans 
into account in order to catch up with it. This 
scenario is arguably the simplest scenario 
that suggests one observable agent is 
applying theory of mind to another 
observable agent, yet there are many different 
ways that X and Z might move in this case. 
Identifying a set of paired moves of X and Z 
that is representative of this variety, and 
designing a representation that captures their 
commonality as theory-of-mind, is a current 
knowledge-engineering challenge for us. 

 Formulating rules to support the Wayang 
approach is a difficult knowledge-
engineering task. As the work reaches higher-
level, more inclusive, narrative-like 
explanations in richer environments (such as 
animations of articulated figures), we hope to 
be able to leverage existing knowledge bases, 
including representations of actions in the 
Parameterized Action Representation (Badler 
et al., 2000) and representations of action 
verbs as found in linguistic semantics 
(Goddard & Wierzbicka, 2009; FrameNet 
2009). 

Conclusion 
The system we have described is currently 
under development and inevitably 
refinements and adjustments will be made as 
we progress. But we have described how the 
design of Wayang meets the objectives listed 
earlier: 



1. The approach handles goal- and physical 
cause-based explanations equally well, 
and holds some promise that it will be 
expressive enough for theory of mind-
based explanations as well. 

2. Wayang’s use of a bottom-up incremental 
parser allows it to generate and manage 
multiple alternate explanations as the 
action unfolds. 

3. Wayang’s use of the concept of impetus 
allows it to model the explanations of 
non-experts in physics. 

4. The use of multiple objects in our sample 
animations provides a rich environment 
and thus more opportunity to evoke rich 
social explanations in our participants 
that we, in turn, can model. 

5. Wayang’s use of feature grammar-like 
rules, and (embedded) confidence 
functions that do not require optimizing 
or norming across competing 
explanations, permit a way of doing 
knowledge engineering that does not 
require updating knowledge that has 
previously worked when adding new 
types of actions or explanations. 

6. The concept of a confidence function has 
been designed to have no a priori 
interpretation (e.g., not as utility) but 
instead merely to summarize the 
combined influence of psychological cues 
so that alternate explanations might be 
ranked. 

 
Our immediate goals are as follows. We will 
continue formulating rules, and creating test 
animations to drive the rule refinement 
process. 

The literature suggests a number of 
factors that influence observer’s perceptions 

of animacy and intentions (see Table 1). We 
are working to identify computable functions 
for each, as well as plausible ways of 
combining such computations when multiple 
cues are present. Note that some of the listed 
influences, such as temporary social isolation 
of the observer, will be relevant only if we 
implement simulated inputs for such observer 
states. 

 As mentioned earlier, we are planning to 
do studies that will determine what events 
people identify in our animations, where the 
event boundaries are, what explanation(s) are 
given for each event (if any), and what the 
typical confidence is in each explanation. The 
results will guide revisions to Wayang’s rules 
and confidence functions. To study the 
interaction of multiple cues, the studies will 
use animations that have only single cues as 
well as animations with combinations of 
cues, to indicate the relative contribution of 
each cue. 

Although Wayang generates explanations 
after each input, there is some evidence that 
people sometimes construct explanations 
only when their predictions fail (Zacks & 
Swallow 2007; Leake 1995). We plan to do a 
deeper literature review on this question, and 
perhaps alter Wayang accordingly. 

During our modeling effort, we have had 
a working assumption that the value of an 
explanation’s confidence score should 
depend solely on the positive evidence 
gathered in support of the explanation. There 
is no discounting due to negative evidence 
nor due to stronger competing explanations. 
We plan a review of the psychological 
literature on inference-making to determine 
whether our working assumption is supported 
or not. 



Table 1 
Psychological cues and influences on the perception of agency and specific intentions 

Type of influence Sample citation

Bottom-up (i.e., information in the stimulus)
Motion cues, e.g., relative velocity Blythe, Todd, & Miller, 1999
Orientation vs direction of motion Scholl & Tremoulet, 2000
Speed relative to background Morewedge, Preson, & Wegner, 

2007
Spatial context, e.g., obstacles and openings Baker, Goodman, & 

Tenenbaum, 2008
Animation techniques aimed at providing "an 
illusion of life'

Thomas & Johnson, 1995

Top-down (i.e., schema-related pre-information)
Pre-information about traits of present agents Shor, 1957
Pre-information about an agent's abilities, beliefs, 
and goals

Malle, 2006

Prejudices for/against the agent's social group Bodenhausen & Wyer, 1985

Other
Repeated exposure to an animation increases agentic 
explanation

Martin & Tversky, 2003

Temporary social isolation reduces 
anthropomorphism

Waytz, Cacioppo, & Epley, 
2010

Social confidence reduces antrhopomorphism Waytz, Cacioppo, & Epley, 
2010

 

 

 

 

 



Appendix: Design considerations for 
animations 
In order to reduce the type of cues our model 
had to detect and interpret, our animations 
included only four colored circles of the same 
size, and only one circle moved. This enabled 
the initial instantiation of the model to rely 
exclusively on translocation-type movement 
cues in relation to a background context. We 
included a letter on each circle to help 
participants refer to them. Thus, in contrast to 
animations that use multiple shapes, such as 
rectangles and triangles (e.g., Heider & 
Simmel, 1944; Martin & Weisberg, 2003; 
Pavlova, Guerreschi, Lutzenberger, & 
Krägeloh-Mann, 2010; Schultz et al., 2003; 
Wheatley, Milleville, & Martin, 2007), all 
shapes in our animations were circles of the 
same size but varied in color (Schultz, 
Imamizu, Kawato, & Frith, 2004; Schultz, 
Friston, O’Doherty, Wolpert, & Frith, 2005). 
Notably, we did not use shapes that indicate 
affordances, such as rectangles or lines that 
represent houses or barriers (e.g., Baker, 
Saxe, & Tenenbaum, 2009; Castelli, et al., 
2000; Heider & Simmel, 1994; Tavares et al., 
2008), or background contexts that were 
cartoon characterizations of real world 
objects (Weatley et al., 2007). By using 
circles, which do not have a line of 
symmetry, we could use a simpler model that 
did not have to determine or track the 
direction the shapes were facing, a cue that 
people use to detect intentions (e.g., Blythe, 
et al., 1999; Gao, et al., 2009). We also tried 
to make the animation imply a top-down 
view (e.g., Heider & Simmel, 1944) to 
remove the issue of depth and thereby 
simplify visual interpretation, in contrast to 
other animations that suggest a side view 
(Gergely, Nádasdy, Csibra, & Bíró, 1995; 
Martin & Weisberg, 2003; Wheatley et al., 
2007).  

Within this simple circle-world, we 
envisioned our focal shape, X, as an agent 

with two concurrent intentions: going to 
Circle Z while avoiding Circle Y. We 
targeted simultaneous, overlapping causes 
because they seem common in the real world 
and we want to avoid oversimplifying the 
problem (at least in the range of candidate 
explanations, although not in the richness of 
the stimulus, of course). We included 
multiple cues in our animation to suggest that 
X was an animate agent with these dual 
intentions. As the animation began, X was 
stationary for almost a second before starting 
to move. Based on the finding that a delay 
before linear movement is sufficient to elicit 
descriptions suggestive of animacy in some 
observers (Gelman, Durgin, & Kaufman, 
1995), we thought this would enhance the 
perception of animacy. Another animacy-
enhancing cue in the animation is based on 
the finding that a moving object with an 
observable goal has been found to be 
perceived as more animate (Opfer, 2002). 
When Object X initially moved, it did so 
towards Z, and continued to do so even while 
moving in an arc around Y, suggesting that 
X’s goal was to get to Z. We also found 
inspiration from two principles provided by 
animators of Walt Disney feature films 
(Thomas & Johnson, 1995). First, we applied 
the easy-in, easy-out principle, which 
suggests that self-propelled moving objects 
start moving slowly and need to accelerate to 
their top speed, and likewise that they slow 
down before stopping. In our intention 
animation, X sped up when starting from a 
stop and slowed down before stopping. 
Second, we applied the principle of 
secondary action, in which a main action is 
augmented by a secondary action that 
supports the primary action. In our 
animation, X wiggled back and forth as it 
moved, with the wiggle being a secondary 
action (such as rocking back and forth while 
walking) for the primary action of moving 
forward. Additionally, changes in movement 
direction and acceleration without any visible 



outside cause has been found to be related to 
perception of animacy (Tremoulet & 
Feldman, 2000; 2006) and specific intentions 
(Blythe et al., 1999). 
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